Some applications of Ricci flow to 3-manifolds
- [1] Université Louis Pasteur Institut de Recherche Mathématique Avancée 7 rue René Descartes 67084 Strasbourg cedex (France)
Séminaire de théorie spectrale et géométrie (2006-2007)
- Volume: 25, page 121-148
- ISSN: 1624-5458
Access Full Article
topHow to cite
topMaillot, Sylvain. "Some applications of Ricci flow to 3-manifolds." Séminaire de théorie spectrale et géométrie 25 (2006-2007): 121-148. <http://eudml.org/doc/11219>.
@article{Maillot2006-2007,
affiliation = {Université Louis Pasteur Institut de Recherche Mathématique Avancée 7 rue René Descartes 67084 Strasbourg cedex (France)},
author = {Maillot, Sylvain},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {121-148},
publisher = {Institut Fourier},
title = {Some applications of Ricci flow to 3-manifolds},
url = {http://eudml.org/doc/11219},
volume = {25},
year = {2006-2007},
}
TY - JOUR
AU - Maillot, Sylvain
TI - Some applications of Ricci flow to 3-manifolds
JO - Séminaire de théorie spectrale et géométrie
PY - 2006-2007
PB - Institut Fourier
VL - 25
SP - 121
EP - 148
LA - eng
UR - http://eudml.org/doc/11219
ER -
References
top- Michael Anderson, Scalar curvature and the existence of geometric structures on 3-manifolds. I, J. Reine Angew. Math. 553 (2002), 125-182 Zbl1023.53020MR1944810
- Sigurd Angenent, Dan Knopf, An example of neckpinching for Ricci flow on , Math. Res. Lett. 11 (2004), 493-518 Zbl1064.58022MR2092903
- Laurent Bessières, Gérard Besson, Michel Boileau, Sylvain Maillot, Joan Porti, Géométrisation des variétés de dimension 3
- Laurent Bessières, Gérard Besson, Michel Boileau, Sylvain Maillot, Joan Porti, Weak collapsing and geometrisation of aspherical -manifolds, ArXiv:0706.2065 (2007) Zbl1244.57003
- Gérard Besson, Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci (d’après Perelman), Séminaire Bourbaki 2004-2005 307 (2006), 309-348, Société Mathématique de France, Paris, France Zbl1181.53055
- Michel Boileau, Uniformisation en dimension trois, Astérisque 266 (2000), Exp. No. 855, 4, 137-174 Zbl0942.57013MR1772673
- Michel Boileau, Sylvain Maillot, Joan Porti, Three-dimensional orbifolds and their geometric structures, 15 (2003), Société Mathématique de France, Paris Zbl1058.57009MR2060653
- Huai-Dong Cao, Xi-Ping Zhu, A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow, Asian Journal of Mathematics 10 (2006), 165-492 Zbl1200.53057MR2233789
- Andrew Casson, Douglas Jungreis, Convergence groups and Seifert fibered 3-manifolds, Invent. Math. 118 (1994), 441-456 Zbl0840.57005MR1296353
- Jeff Cheeger, Michael Gromov, Collapsing riemannian manifolds while keeping their curvature bounded I, J. Differential Geometry 23 (1986), 309-346 Zbl0606.53028MR852159
- Jeff Cheeger, Michael Gromov, Collapsing riemannian manifolds while keeping their curvature bounded II, J. Differential Geometry 32 (1990), 269-298 Zbl0727.53043MR1064875
- Bennett Chow, Dan Knopf, The Ricci flow : an introduction, 110 (2004), A.M.S. Zbl1086.53085MR2061425
- Tobias H. Colding, William P. Minicozzi, Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005), 561-569 (electronic) Zbl1083.53058MR2138137
- Tobias H. Colding, William P. Minicozzi, Width and finite extinction time of Ricci flow, ArXiv:0707.0108 (2007) Zbl1161.53352
- Kenji Fukaya, Collapsing Riemannian manifolds and its applications, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (1991), 491-500, Math. Soc. Japan, Tokyo Zbl0749.53023MR1159236
- David Gabai, Convergence groups are Fuchsian groups, Annals of Math. 136 (1992), 447-510 Zbl0785.57004MR1189862
- M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5-99 (1983) Zbl0516.53046MR686042
- Michael Gromov, Hyperbolic manifolds (according to Thurston and Jørgensen), Bourbaki Seminar, Vol. 1979/80 842 (1981), 40-53, Springer, Berlin Zbl0452.51017MR636516
- Michael Gromov, Blaine Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83-196 (1984) Zbl0538.53047MR720933
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306 Zbl0504.53034MR664497
- Richard S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), 153-179 Zbl0628.53042MR862046
- Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) (1995), 7-136, Internat. Press, Cambridge, MA Zbl0867.53030MR1375255
- Richard S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), 1-92 Zbl0892.53018MR1456308
- Richard S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999), 695-729 Zbl0939.53024MR1714939
- John Hempel, -manifolds, 086 (1976), Princeton University Press, Princeton Zbl0345.57001MR415619
- William Jaco, Lectures on three-manifold topology, 43 (1980), American Mathematical Society, Providence, Rhode Island, USA Zbl0433.57001MR565450
- William H. Jaco, Peter B. Shalen, Seifert fibered spaces in 3-manifolds, (1979), American Mathematical Society, Providence, Rhode Island, USA Zbl0471.57001MR539411
- Klaus Johannson, Homotopy equivalences of 3-manifolds with boundary, 761 (1979), Springer, Berlin Zbl0412.57007MR551744
- Michael Kapovich, Hyperbolic manifolds and discrete groups, 183 (2001), Birkhäuser Boston Inc., Boston, MA Zbl0958.57001MR1792613
- Bruce Kleiner, John Lott, Notes on Perelman’s papers, ArXiv: math.DG/0605667 (2006) Zbl1204.53033
- John Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007), 627-666 Zbl1135.53046MR2336062
- Sylvain Maillot, Open 3-manifolds whose fundamental groups have infinite center, and a torus theorem for 3-orbifolds, Trans. Amer. Math. Soc. 355 (2003), 4595-4638 (electronic) Zbl1030.57029MR1990764
- Geoffrey Mess, The Seifert conjecture and groups which are coarse quasiisometric to planes Zbl0772.57025
- John Morgan, Gang Tian, Ricci flow and the Poincaré conjecture, 3 (2007), American Mathematical Society, Providence, RI Zbl1179.57045MR2334563
- Robert Myers, Simple knots in compact, orientable -manifolds, Trans. Amer. Math. Soc. 273 (1982), 75-91 Zbl0508.57008MR664030
- Jean-Pierre Otal, Thurston’s hyperbolization of Haken manifolds, Surveys in differential geometry, Vol. III (Cambridge, MA, 1996) (1998), 77-194, Int. Press, Boston, MA Zbl0997.57001
- Jean-Pierre Otal, The hyperbolization theorem for fibered 3-manifolds, 7 (2001), American Mathematical Society, Providence, RI Zbl0986.57001MR1855976
- P. Pansu, Effondrement des variétés riemanniennes, d’après J. Cheeger et M. Gromov, Astérisque 121-122 (1985), 63-82 Zbl0551.53020
- Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, ArXiv : math.DG/0211159 (2002) Zbl1130.53001
- Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, ArXiv : math.DG/0307245 (2003) Zbl1130.53003
- Grisha Perelman, Ricci flow with surgery on three-manifolds, ArXiv : math.DG/0303109 (2003) Zbl1130.53002
- Richard Schoen, Shing-Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), 127-142 Zbl0431.53051MR541332
- Peter Scott, The geometries of -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
- Peter Scott, There are no fake Seifert fibered spaces with infinite , Annals of Math. 117 (1983), 35-70 Zbl0516.57006MR683801
- Takashi Shioya, Takao Yamaguchi, Volume collapsed three-manifolds with a lower curvature bound, Math. Ann. 333 (2005), 131-155 Zbl1087.53033MR2169831
- Teruhiko Soma, The Gromov invariant of links, Invent. Math. 64 (1981), 445-454 Zbl0478.57006MR632984
- Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1-54 Zbl0644.30027MR961162
- Friedhelm Waldhausen, Eine Klasse von -dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308–333; ibid. 4 (1967), 87-117 Zbl0168.44503MR235576
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.