Proof of the Poincaré conjecture via the Ricci flow

Gérard Besson

Séminaire Bourbaki (2004-2005)

  • Volume: 47, page 309-348
  • ISSN: 0303-1179

Abstract

top
We present the proof of the Poincaré conjecture, on closed simply conneted three-manifolds, proposed by G. Perel’man. It relies on the study of riemannian metrics evoluting under the Ricci flow and on previous works by R. Hamilton. After and introduction to the analytical and geometrical techniques developped by R. Hamilton, we try to describe the technique of metric surgery used by G. Perel’man to go through the singular times for which the scalar curvature goes to infinity on certain parts of the manifold. the proof of the Poincaré conjecture then relies on the proof of the finite extinction time of the flow with surgeries, under certain assumptions, for which we present a version due to T. Colding and W. Minicozzi.

How to cite

top

Besson, Gérard. "Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci." Séminaire Bourbaki 47 (2004-2005): 309-348. <http://eudml.org/doc/252178>.

@article{Besson2004-2005,
abstract = {Nous présentons la preuve de la conjecture de Poincaré, concernant les variétés compactes simplement connexes de dimension $3$, proposée par G. Perel’man. Elle repose sur l’étude de l’évolution de métriques riemanniennes sous le flot de la courbure de Ricci et sur les travaux antérieurs de R. Hamilton. Après une introduction aux techniques analytiques et géométriques développées par R. Hamilton, nous tentons de décrire la méthode de chirurgie métrique utilisée par G. Perel’man pour franchir les temps pour lesquels la courbure scalaire tend vers l’infini dans certaines parties de la variété. La preuve de la conjecture de Poincaré repose alors sur la preuve de l’extinction en temps fini du flot avec chirurgies, sous certaines hypothèses, que nous présentons dans la version élaborée par T. Colding et W. Minicozzi.},
author = {Besson, Gérard},
journal = {Séminaire Bourbaki},
keywords = {three-manifolds; Poincaré conjecture; Ricci flow},
language = {fre},
pages = {309-348},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci},
url = {http://eudml.org/doc/252178},
volume = {47},
year = {2004-2005},
}

TY - JOUR
AU - Besson, Gérard
TI - Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 309
EP - 348
AB - Nous présentons la preuve de la conjecture de Poincaré, concernant les variétés compactes simplement connexes de dimension $3$, proposée par G. Perel’man. Elle repose sur l’étude de l’évolution de métriques riemanniennes sous le flot de la courbure de Ricci et sur les travaux antérieurs de R. Hamilton. Après une introduction aux techniques analytiques et géométriques développées par R. Hamilton, nous tentons de décrire la méthode de chirurgie métrique utilisée par G. Perel’man pour franchir les temps pour lesquels la courbure scalaire tend vers l’infini dans certaines parties de la variété. La preuve de la conjecture de Poincaré repose alors sur la preuve de l’extinction en temps fini du flot avec chirurgies, sous certaines hypothèses, que nous présentons dans la version élaborée par T. Colding et W. Minicozzi.
LA - fre
KW - three-manifolds; Poincaré conjecture; Ricci flow
UR - http://eudml.org/doc/252178
ER -

References

top
  1. [1] M. Anderson – “Geometrization of three-manifolds via the Ricci flow”, Notices Amer. Math. Soc. 51 (2004), no. 2, p. 184–193. Zbl1161.53350MR2026939
  2. [2] L. Bessières – “Conjecture de Poincaré : la preuve de R. Hamilton et G. Perelman”, La gazette des mathématiciens 106 (2005). Zbl1129.53045MR2191421
  3. [3] J.-P. Bourguignon – “L’équation de la chaleur associée à la courbure de Ricci”, in Séminaire Bourbaki 1985-86, Exp. n 653, Astérisque145-146, Société Mathématique de France, 1987, p. 45–61. Zbl0613.53018MR880025
  4. [4] D. Burago, Y. Burago & S. Ivanov – A course in metric geometry, Graduate Studies in Mathematics, vol. 33, Amer. Math. Soc. Providence R.I., 2001. Zbl0981.51016MR1835418
  5. [5] J. Cheeger & D. Ebin – Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam-Oxford, 1975. Zbl1142.53003MR458335
  6. [6] J. Cheeger & M. Gromov – “Collapsing Riemannian manifolds while keeping their curvature bounded I”, J. Differential Geometry23 (1986), p. 309–346. Zbl0606.53028MR852159
  7. [7] —, “Collapsing Riemannian manifolds while keeping their curvature bounded II”, J. Differential Geometry32 (1990), p. 269–298. Zbl0727.53043MR1064875
  8. [8] B.-L. Chen & X.-P. Zhu – “Ricci flow with surgery on four-manifolds with positive isotropic curvature”, ArXiv : math.DG/0504478v1, april 2005. Zbl1103.53036MR2258799
  9. [9] X. Chen, P. Lu & G. Tian – “A note on uniformization of Riemann surface by Ricci flow”, ArXiv :math.DG/0505163, may, 10 2005. Zbl1113.53042MR2231924
  10. [10] B. Chow – “On the entropy estimate for the Ricci flow on compact 2 -orbifolds”, J. Differential Geometry33 (1991), p. 597–600. Zbl0734.53034MR1094471
  11. [11] —, “The Ricci flow on the 2 -sphere”, J. Differential Geometry33 (1991), p. 325–334. Zbl0734.53033MR1094458
  12. [12] B. Chow & S.-C. Chu – “A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow”, ArXiv : math.DG/0211349, November, 22 2002. Zbl0856.53030MR1362964
  13. [13] B. Chow & D. Knopf – The Ricci flow : an introduction, Mathematical surveys and monographs, vol. 110, A.M.S., 2004. Zbl1086.53085MR2061425
  14. [14] B. Chow & P. Lu – “The time-dependent maximum principle for systems of parabolic equations subject to an avoidance set”, ArXiv : math.DG/0211209, november 2002, To appear in Pacific J. Math. Zbl1049.35101
  15. [15] B. Chow & L.-F. Wu – “The Ricci flow on compact 2 -orbifolds with curvature negative somewhere”, Comm. on Pure and Appl. Math.44 (1991), p. 275–286. Zbl0745.58047MR1090433
  16. [16] T. Colding & W. Minicozzi – “Estimates for the extinction time for the Ricci flow on certain three-manifolds and a question of Perelman”, J. Amer. Math. Soc. 18 (2005), no. 3, p. 561–569. Zbl1083.53058MR2138137
  17. [17] D. DeTurck – “Deforming metrics in the direction of their Ricci tensors”, J. Differential Geometry18 (1983), p. 157–162. Zbl0517.53044MR697987
  18. [18] Y. Ding – “Notes on Perelman’s second paper”, http://www.math.uci.edu/~yding/perelman.pdf. 
  19. [19] M. Gage & R. Hamilton – “The heat equation shrinking convex plane curves”, J. Differential Geometry23 (1986), p. 69–96. Zbl0621.53001MR840401
  20. [20] S. Gallot, D. Hulin & J. Lafontaine – Riemannian geometry, Universitext, Springer-Verlag, 2004. Zbl0636.53001MR2088027
  21. [21] M. Grayson – “The heat equation shrinks embedded plane curves to round points”, J. Differential Geometry26 (1987), p. 285–314. Zbl0667.53001MR906392
  22. [22] —, “Shortening embedded curves”, Ann. of Math.129 (1989), p. 71–111. Zbl0686.53036MR979601
  23. [23] R. Greene – “A genealogy of noncompact manifolds of nonnegative curvature : history and logic”, in Comparison geometry, M.S.R.I. publications, vol. 30, M.S.R.I., 1997, p. 99–134. Zbl0884.53029MR1452869
  24. [24] R. Hamilton – “Three-manifolds with positive Ricci curvature”, J. Differential Geometry17 (1982), p. 255–306. Zbl0504.53034MR664497
  25. [25] —, “Four-manifolds with positive curvature operator”, J. Differential Geometry24 (1986), p. 153–179. Zbl0628.53042MR862046
  26. [26] —, “The Ricci flow on surfaces”, in Mathematics and general relativity (Santa Cruz 1986), Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, p. 237–262. Zbl0663.53031MR954419
  27. [27] —, “The Harnack estimate for the Ricci flow”, J. Differential Geometry 37 (1993), no. 1, p. 225–243. Zbl0804.53023MR1198607
  28. [28] —, “A compactness property for solutions of the Ricci flow”, Amer. J. Math. 117 (1995), no. 3, p. 545–572. Zbl0840.53029MR1333936
  29. [29] —, “The formation of singularities in the Ricci flow”, in Surveys in differential geometry, vol. II, International Press, Cambridge MA, 1995, p. 7–136. Zbl0867.53030MR1375255
  30. [30] —, “Four-manifolds with positive isotropic curvature”, Comm. Anal. Geom.1 (1997), p. 1–92. Zbl0892.53018MR1456308
  31. [31] —, “Non-singular solutions of the Ricci flow on three-manifolds”, Comm. Anal. Geom. 7 (1999), no. 4, p. 625–729. Zbl0939.53024MR1714939
  32. [32] A. Hatcher – “Notes on basic 3 -manifold topology”, http://www.math.cornell.edu/~hatcher, 1997. 
  33. [33] G. Huisken – “Ricci deformation of the metric on a Riemannian manifold”, J. Differential Geometry 21 (1984), no. 1, p. 47–62. Zbl0606.53026MR806701
  34. [34] T. Ivey – “Ricci solitons on compact three-manifolds”, Diff. Geom. Appl. (1993), p. 301–307. Zbl0788.53034MR1249376
  35. [35] J. Jost – Two-dimensionnal geometric variational problems, J. Wiley-Intersciences, Chichester N.Y., 1991. Zbl0729.49001MR1100926
  36. [36] B. Kleiner & J. Lott – “Notes on Perelman’s papers”, http://www.math.lsa.umich.edu/research/Ricci flow/ perelman.html, december 30 2004. Zbl1204.53033
  37. [37] O. Ladysenskaja, V. Solonnikov & N. Uralceva – Linear and quasilnear equations of parabolic type, Transl. Amer. Math. Soc., vol. 23, Amer. Math. Soc., 1968. Zbl0174.15403MR241822
  38. [38] P. Li & S. T. Yau – “On the parabolic kernel of the Schrödinger operator”, Acta Math. 156 (1986), no. 3-4, p. 153–201. Zbl0611.58045MR834612
  39. [39] S. Maillot – “Flot de Ricci et géométrisation des variétés de dimension 3 .”, Notes informelles, juin 2004. 
  40. [40] C. Margerin – “Pointwise pinched manifolds are space forms”, in Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, p. 307–328. Zbl0587.53042MR840282
  41. [41] M. Micallef & J. Moore – “Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes”, Ann. of Math.127 (1988), p. 199–227. Zbl0661.53027MR924677
  42. [42] J. Milnor – “Towards the Poincaré conjecture and the classification of 3 -manifolds”, Notices Amer. Math. Soc.50 (2003), p. 1226–1233. Zbl1168.57303MR2009455
  43. [43] J. Morgan – “Recent progress on the Poincaré conjecture”, Bull. Amer. Math. Soc. 42 (2005), no. 1, p. 57–78. Zbl1100.57016MR2115067
  44. [44] G. Perelman – “The entropy formula for the Ricci flow and its geometric applications”, ArXiv : math.DG/0211159, november 2002. Zbl1130.53001
  45. [45] —, “Finite extinction time for the solutions to the Ricci flow on certain three-manifolds”, ArXiv : math.DG/0307245, july 2003. Zbl1130.53003
  46. [46] —, “Ricci flow with surgery on three-manifolds”, ArXiv : math.DG/0303109, march 2003. 
  47. [47] V. Poenaru – “Poincaré et l’hypersphère”, Pour la Science Dossier hors-série n 41 (2003), p. 52–57. 
  48. [48] H. Poincaré – “Cinquième complément à l’analysis situs”, Rend. Circ. Mat. Palermo18 (1904), p. 45–110. Zbl35.0504.13JFM35.0504.13
  49. [49] M. Protter & H. Weinberger – Maximum principles in differential equations, Mathematical surveys and monographs, vol. 110, A.M.S., 2004. Zbl0153.13602
  50. [50] P. Scott – “The geometries of 3 -manifolds”, Bull. London Math. Soc.15 (1983), p. 401–487. Zbl0561.57001MR705527
  51. [51] N. Sesum, G. Tian & X. Wang – “Notes on Perelman’s paper on the entropy formula for the Ricci flow and its applications”, Notes, september 24 2003. 
  52. [52] W.-X. Shi – “Deforming the metric on complete Riemannian manifolds”, J. Differential Geometry 30 (1989), no. 1, p. 223–301. Zbl0676.53044MR1001277
  53. [53] —, “Ricci deformation of the metric on complete noncompact Riemannian manifolds”, J. Differential Geometry 30 (1989), no. 2, p. 303–394. Zbl0686.53037MR1010165
  54. [54] T. Shioya & T. Yamaguchi – “Collapsing three-manifolds under a lower curvature bound”, J. Differential Geometry56 (2000), p. 1–66. Zbl1036.53028MR1863020
  55. [55] —, “Volume collapsed three-manifolds with a lower curvature bound”, ArXiv : math.DG/0304472, April, 15 2003. 
  56. [56] W. P. Thurston – The geometry and topology of 3 -manifolds, Lecture Notes, Princeton University, 1979. 
  57. [57] —, “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc. 6 (1982), no. 3, p. 357–381. Zbl0496.57005MR648524
  58. [58] P. Topping – “Lectures on the Ricci flow”, Communication privée, 9 mai 2005. Zbl1105.58013MR2265040
  59. [59] L.-F. Wu – “The Ricci flow on 2 -orbifolds with curvature”, J. Differential Geometry33 (1991), p. 575–596. Zbl0735.53030MR1094470
  60. [60] —, “The Ricci flow on 2 -orbifolds with positive curvature”, J. Differential Geometry33 (1991), p. 575–596. Zbl0735.53030MR1094470
  61. [61] R. Ye – “Notes on the reduced volume and asymptotic Ricci solitons of κ -solutions”, http://www.math.ucsb.edu/~yer/ricciflow.html, december 20. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.