Groupes triangulaires lagrangiens en géométrie hyperbolique complexe
Pierre Will[1]
- [1] Université Pierre et Marie Curie Institut de Mathématiques 4 place Jussieu 75252 Paris cedex 05 (France)
Séminaire de théorie spectrale et géométrie (2006-2007)
- Volume: 25, page 189-209
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topWill, Pierre. "Groupes triangulaires lagrangiens en géométrie hyperbolique complexe." Séminaire de théorie spectrale et géométrie 25 (2006-2007): 189-209. <http://eudml.org/doc/11225>.
@article{Will2006-2007,
abstract = {Nous présentons quelques résultats au sujet des groupes engendrés par trois involutions antiholomorphes dans le cadre du plan hyperbolique complexe $\mathbf\{H\}^\{2\}_\{\mathbb\{C\}\}$.},
affiliation = {Université Pierre et Marie Curie Institut de Mathématiques 4 place Jussieu 75252 Paris cedex 05 (France)},
author = {Will, Pierre},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {189-209},
publisher = {Institut Fourier},
title = {Groupes triangulaires lagrangiens en géométrie hyperbolique complexe},
url = {http://eudml.org/doc/11225},
volume = {25},
year = {2006-2007},
}
TY - JOUR
AU - Will, Pierre
TI - Groupes triangulaires lagrangiens en géométrie hyperbolique complexe
JO - Séminaire de théorie spectrale et géométrie
PY - 2006-2007
PB - Institut Fourier
VL - 25
SP - 189
EP - 209
AB - Nous présentons quelques résultats au sujet des groupes engendrés par trois involutions antiholomorphes dans le cadre du plan hyperbolique complexe $\mathbf{H}^{2}_{\mathbb{C}}$.
LA - fre
UR - http://eudml.org/doc/11225
ER -
References
top- M. Deraux, E. Falbel, and J. Paupert. New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math., 194 :155–201, 2005. Zbl1113.22010MR2231340
- E. Falbel and P.V. Koseleff. A circle of modular groups in . Math. Res. Let., 9 :379–391, 2002. Zbl1008.20038MR1909651
- E. Falbel and P.V. Koseleff. Rigidity and flexibility of triangle groups in complex hyperbolic geometry. Topology, 41, 2002. Zbl1005.32018MR1905838
- E. Falbel and J. Parker. The moduli space of the modular group. Inv. Math., 152, 2003. Zbl1160.32306MR1965360
- E. Falbel and V. Zocca. A oincaré polyhedron theorem for complex hyperbolic geometry. J. reine angew. Math., 516 :133–158, 1999. Zbl0944.53042MR1724618
- W. Goldman. Complex Hyperbolic Geometry. Oxford University Press, Oxford, 1999. Zbl0939.32024MR1695450
- W. Goldman and J. Parker. Complex hyperbolic ideal triangle groups. Journal für dir reine und angewandte Math., 425 :71–86, 1992. Zbl0739.53055MR1151314
- N. Gusevskii and J.R. Parker. Complex hyperbolic quasi-fuchsian groups and oledo’s invariant. Geom. Ded., 97 :151–185, 2003. Zbl1042.57023
- G. D. Mostow. A remarkable class of polyhedra in complex hyperbolic space. Pac. J. Math., 86 :171–276, 1980. Zbl0456.22012MR586876
- J. Parker and I. Platis. Open sets of maximal dimension in complex hyperbolic quasi-fuchsian space. J. Diff. Geom, 73 :319–350, 2006. Zbl1100.30037MR2226956
- A. Pratoussevitch. Traces in complex hyperbolic triangle groups. Geometriae Dedicata, 111 :159–185, 2005. Zbl1115.32015MR2155180
- H. Sandler. Traces on and complex hyperbolic ideal triangle groups. Algebras groups and geometries, 12 :139–156, 1995. Zbl0910.20032MR1325978
- R. E. Schwartz. Degenerating the complex hyperbolic ideal triangle groups. Acta Math., 186 :105–154, 2001. Zbl0998.53050MR1828374
- R. E. Schwartz. Ideal triangle groups, dented tori, and numerical analysis. Ann. of Math. (2), 153 :533–598, 2001. Zbl1055.20040MR1836282
- R. E. Schwartz. Complex hyperbolic triangle groups. Proc. Int. Math. Cong., 1 :339–350, 2002. Zbl1022.53034MR1957045
- R. E. Schwartz. A better proof of the oldman-arker conjecture. Geometry and Topology, 9, 2005. Zbl1098.20034MR2175152
- P. Will. Groupes libres, groupes triangulaires et tore épointé dans PU(2,1). Thèse de l’université Paris VI.
- P. Will. Traces, cross-ratios and 2-generator subgroups of (2,1). Preprint disponible sur www.math.jussieu.fr/ will
- P. Will. The punctured torus and agrangian triangle groups in . J. reine angew. Math., 602 :95–121, 2007. Zbl1117.32010MR2300453
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.