Polynomials and multilinear forms on fully nuclear spaces

Philipp J. Boland

Séminaire Paul Krée (1977-1978)

  • Volume: 4, page 1-7

How to cite

top

Boland, Philipp J.. "Polynomials and multilinear forms on fully nuclear spaces." Séminaire Paul Krée 4 (1977-1978): 1-7. <http://eudml.org/doc/112847>.

@article{Boland1977-1978,
author = {Boland, Philipp J.},
journal = {Séminaire Paul Krée},
keywords = {Uniform Convergence on Compact Sets; Fully Nuclear Spaces; Duality; Polynomials; Nachbin Ported Topology; Hypocontinuous M-Linear Forms},
language = {eng},
pages = {1-7},
publisher = {Secrétariat mathématique},
title = {Polynomials and multilinear forms on fully nuclear spaces},
url = {http://eudml.org/doc/112847},
volume = {4},
year = {1977-1978},
}

TY - JOUR
AU - Boland, Philipp J.
TI - Polynomials and multilinear forms on fully nuclear spaces
JO - Séminaire Paul Krée
PY - 1977-1978
PB - Secrétariat mathématique
VL - 4
SP - 1
EP - 7
LA - eng
KW - Uniform Convergence on Compact Sets; Fully Nuclear Spaces; Duality; Polynomials; Nachbin Ported Topology; Hypocontinuous M-Linear Forms
UR - http://eudml.org/doc/112847
ER -

References

top
  1. [1] Barroso ( J.A.), Matos ( M.C.) and Nachbin ( L.). - On bounded sets of holomorphic mappings, "Infinite dimensional holomorphy [Lexington, 1973]", p. 123-134. - Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 364). Zbl0282.46032MR394200
  2. [2] Boland ( P.J.). - Malgrange theorem for entire functions on nuclear spaces, "Infinite dimensional holomorphy [Lexington, 1973]", p. 135-144. - Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 364). Zbl0282.46019MR420271
  3. [3] Boland ( P.J.). - An example of a nuclear space in infinite dimensional holomorphy, Arkiv für Mat., t. 15, 1977, p. 87-91. Zbl0348.46035MR450973
  4. [4] Boland ( P.J.) and Dineen ( S.). - Holomorphic functions on fully nuclear spaces, Bull. Soc. math. France, t. 106, 1978, p. 311-336. Zbl0402.46017MR515406
  5. [5] Boland ( P.J.) and Dineen ( S.). - Duality theory for spaces of germs and holomorphic functions on nuclear spaces (to appear). Zbl0416.46032MR632038
  6. [6] Dineen ( S.). - Holomorphic functions on locally convex topological vector spaces, I : Locally convex topologies on H(U) , Ann. Inst. Fourier, Grenoble, t. 23, 1973, fasc. 1, p. 19-54. Zbl0241.46022MR500153
  7. [7] Dineen ( S.). - Surjective limits of locally convex spaces and their applications to infinite dimensional holomorphy, Bull. Soc. math. France, t. 103, 1975, p. 441-509. Zbl0328.46045MR423075
  8. [8] Gupta ( C.). - Convolution operators and holomorphic functions on a Banach space, Séminaire d' analyse moderne, n° 2, Université de Sherbrooke. Zbl0243.47016
  9. [9] Horvath ( J.). - Topological vector spaces and distributions, Vol. 1. - Reading, Addison-Wesley, 1966 (Addison-Wesley Series in Mathematics). Zbl0143.15101MR205028
  10. [10] Kelley ( J.). - General topology. - Princeton, Van Nostrand, 1955 (The University Series in higher Mathematics). Zbl0066.16604MR70144
  11. [11] Pietsch ( A.). - Nuclear locally convex spaces. - New York, Springer-Verlag, 1972 (Ergebnisse der Mathematik, 66). Zbl0236.46001MR350360

NotesEmbed ?

top

You must be logged in to post comments.