Polynomials and multilinear forms on fully nuclear spaces

Philipp J. Boland

Séminaire Paul Krée (1977-1978)

  • Volume: 4, page 1-7

How to cite

top

Boland, Philipp J.. "Polynomials and multilinear forms on fully nuclear spaces." Séminaire Paul Krée 4 (1977-1978): 1-7. <http://eudml.org/doc/112847>.

@article{Boland1977-1978,
author = {Boland, Philipp J.},
journal = {Séminaire Paul Krée},
keywords = {Uniform Convergence on Compact Sets; Fully Nuclear Spaces; Duality; Polynomials; Nachbin Ported Topology; Hypocontinuous M-Linear Forms},
language = {eng},
pages = {1-7},
publisher = {Secrétariat mathématique},
title = {Polynomials and multilinear forms on fully nuclear spaces},
url = {http://eudml.org/doc/112847},
volume = {4},
year = {1977-1978},
}

TY - JOUR
AU - Boland, Philipp J.
TI - Polynomials and multilinear forms on fully nuclear spaces
JO - Séminaire Paul Krée
PY - 1977-1978
PB - Secrétariat mathématique
VL - 4
SP - 1
EP - 7
LA - eng
KW - Uniform Convergence on Compact Sets; Fully Nuclear Spaces; Duality; Polynomials; Nachbin Ported Topology; Hypocontinuous M-Linear Forms
UR - http://eudml.org/doc/112847
ER -

References

top
  1. [1] Barroso ( J.A.), Matos ( M.C.) and Nachbin ( L.). - On bounded sets of holomorphic mappings, "Infinite dimensional holomorphy [Lexington, 1973]", p. 123-134. - Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 364). Zbl0282.46032MR394200
  2. [2] Boland ( P.J.). - Malgrange theorem for entire functions on nuclear spaces, "Infinite dimensional holomorphy [Lexington, 1973]", p. 135-144. - Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 364). Zbl0282.46019MR420271
  3. [3] Boland ( P.J.). - An example of a nuclear space in infinite dimensional holomorphy, Arkiv für Mat., t. 15, 1977, p. 87-91. Zbl0348.46035MR450973
  4. [4] Boland ( P.J.) and Dineen ( S.). - Holomorphic functions on fully nuclear spaces, Bull. Soc. math. France, t. 106, 1978, p. 311-336. Zbl0402.46017MR515406
  5. [5] Boland ( P.J.) and Dineen ( S.). - Duality theory for spaces of germs and holomorphic functions on nuclear spaces (to appear). Zbl0416.46032MR632038
  6. [6] Dineen ( S.). - Holomorphic functions on locally convex topological vector spaces, I : Locally convex topologies on H(U) , Ann. Inst. Fourier, Grenoble, t. 23, 1973, fasc. 1, p. 19-54. Zbl0241.46022MR500153
  7. [7] Dineen ( S.). - Surjective limits of locally convex spaces and their applications to infinite dimensional holomorphy, Bull. Soc. math. France, t. 103, 1975, p. 441-509. Zbl0328.46045MR423075
  8. [8] Gupta ( C.). - Convolution operators and holomorphic functions on a Banach space, Séminaire d' analyse moderne, n° 2, Université de Sherbrooke. Zbl0243.47016
  9. [9] Horvath ( J.). - Topological vector spaces and distributions, Vol. 1. - Reading, Addison-Wesley, 1966 (Addison-Wesley Series in Mathematics). Zbl0143.15101MR205028
  10. [10] Kelley ( J.). - General topology. - Princeton, Van Nostrand, 1955 (The University Series in higher Mathematics). Zbl0066.16604MR70144
  11. [11] Pietsch ( A.). - Nuclear locally convex spaces. - New York, Springer-Verlag, 1972 (Ergebnisse der Mathematik, 66). Zbl0236.46001MR350360

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.