Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on
Annales de l'institut Fourier (1973)
- Volume: 23, Issue: 1, page 19-54
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDineen, Sean. "Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on ${\mathcal {H}} (U) $." Annales de l'institut Fourier 23.1 (1973): 19-54. <http://eudml.org/doc/74110>.
@article{Dineen1973,
abstract = {This article is devoted to a study of locally convex topologies on $\{\bf H\}(U)$ (where $U$ is an open subset of the locally convex topological vector space $E$ and $\{\bf H\}(U)$ is the set of all complex valued holomorphic functions on $E$). We discuss the following topologies on $\{\bf H\}(U)$:(a) the compact open topology $\{\bf I\}_0$,(b) the bornological topology associated with $\{\bf I\}_0$,(c) the ported topology of Nachbin $\{\bf I\}_\omega $,(d) the bornological topology associated with $\{\bf I\}_\omega $ ; and(e) the $\{\bf I\}_\omega $ topological of Nachbin.For $U$ balanced we show these topologies are related to various kinds of convergence of the Taylor series at $o$. This in turn allows us to obtain criterion for equality of different topologies on $\{\bf H\}(U)$ and to construct counterexamples when we do not have equality.},
author = {Dineen, Sean},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {19-54},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on $\{\mathcal \{H\}\} (U) $},
url = {http://eudml.org/doc/74110},
volume = {23},
year = {1973},
}
TY - JOUR
AU - Dineen, Sean
TI - Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on ${\mathcal {H}} (U) $
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 1
SP - 19
EP - 54
AB - This article is devoted to a study of locally convex topologies on ${\bf H}(U)$ (where $U$ is an open subset of the locally convex topological vector space $E$ and ${\bf H}(U)$ is the set of all complex valued holomorphic functions on $E$). We discuss the following topologies on ${\bf H}(U)$:(a) the compact open topology ${\bf I}_0$,(b) the bornological topology associated with ${\bf I}_0$,(c) the ported topology of Nachbin ${\bf I}_\omega $,(d) the bornological topology associated with ${\bf I}_\omega $ ; and(e) the ${\bf I}_\omega $ topological of Nachbin.For $U$ balanced we show these topologies are related to various kinds of convergence of the Taylor series at $o$. This in turn allows us to obtain criterion for equality of different topologies on ${\bf H}(U)$ and to construct counterexamples when we do not have equality.
LA - eng
UR - http://eudml.org/doc/74110
ER -
References
top- [1] R.M. ARON, Topological properties of the space of holomorphic mappings, Thesis, University of Rochester 1970.
- [2] R.M. ARON, Sur la topologie bornologique pour l'espace d'applications holomorphes, C.R. Acad. Sc., Paris, t 272, 872-873, 1971. Zbl0206.42101MR43 #5295
- [3] J.A. BARROSO, Topologias nos espacos de aplicacoes holomorfas entre espacos localmente convexos, (to appear in Anais de Acad. Brasil de Cienciais).
- [4] J.A. BARROSO, Topologies sur les espaces d'applications holomorphes entre des espaces localement convexes, C.R. Acad. Sc., Paris, t 271, 264-265, 1970. Zbl0217.16402MR42 #6594
- [5] J. BOCHNAK, J. SICIAK, Fonctions analytiques dans les espaces vectoriels réels ou complexes, C.R. Acad. Sc., Paris, t. 270, 1970, 643-646. Zbl0189.42701MR43 #7920
- [6] J. BOCHNAK, J. SICIAK, Analytic functions in topological vector spaces, Studia Math. 39, 1, 1971. Zbl0214.37703MR47 #2365
- [7] S.B. CHAE, Holomorphic germs on Banach spaces, Thesis, University of Rochester, 1969.
- [8] S.B. CHAE, Sur les espaces localement de germes holomorphes, C.R. Acad. Sc., Paris, t. 271, 990-991, 1970. Zbl0201.15603MR45 #876
- [9] G. COEURÉ, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques, Annales de l'Institut Fourier, t. 20, 361-432, 1970. Zbl0187.39003MR43 #564
- [10] G. COEURÉ, Fonctionnelles analytiques sur certains espaces de Banach, Annales de l'Institut Fourier, 21, 2, 15-21, 1971. Zbl0205.41303MR49 #3541
- [11] S. DINEEN, Holomorphy types on a Banach space, Thesis, University of Maryland, 1969, Studia Math., 39, 241-288, 1971. Zbl0235.32013
- [12] S. DINEEN, Unbounded holomorphic functions on a Banach space, J. Lond. Math. Soc., Vol. 4, 3, 461-465, 1972. Zbl0244.46015MR45 #5753
- [13] S. DINEEN, Bounding subsets of a Banach space, Math. Annalen, 192, 61-70, (1971). Zbl0202.12803MR46 #2428
- [14] S. DINEEN, Holomorphic functions on (co, Xb)-Modules, Math. Annalen, 196, 106-116, 1972. Zbl0219.46021MR45 #9118
- [15] S. DINEEN, Topologie de Nachbin et prolongement analytique en dimension infinie, C.R. Acad. Sc., Paris, t. 271, 643-644, 1970. Zbl0198.46002MR43 #887
- [16] S. DINEEN, The Cartan-Thullen theorem for Banach spaces, Annali Scuola Normale Sup., Pisa, 24, 4, 667-674, 1970. Zbl0235.46037MR43 #3487
- [17] A. HIRSCHOWITZ, Bornologie des espaces de fonctions analytiques en dimension infinie, Séminaire P. Lelong, 1970, Springer-Verlag, Bd. 205, 1971. Zbl0225.46027
- [18] A. HIRSCHOWITZ, Sur les suites de fonctions analytiques, Ann. Inst. Fourier, 20, 2, 1971. Zbl0195.40905MR44 #3104
- [19] A. HIRSCHOWITZ, Sur un théorème de M.A. Zorn. Zbl0239.46037
- [20] L. HORMANDER, An introduction to complex analysis in several variables, Van Nostrand 1966. Zbl0138.06203MR34 #2933
- [21] J. HORVATH, Topological vector spaces and distributions, Vol. 1., Addison-Wesley 1966. Zbl0143.15101MR34 #4863
- [22] N.J. KALTON, Schauder decompositions and completeness, J. Lond. Math. Soc. 2, 1970 34-36. Zbl0196.13601MR41 #4185
- [23] N.J. KALTON, Schauder decompositions in locally convex spaces, P. Camb. Phil. Soc. 1970, 68, 377, 68-75. Zbl0196.13505MR41 #7401
- [24] P. LELONG, Recent results on analytic mappings and plurisubharmonic functions in topological linear spaces, Internat. Conf. on several complex variables, Univ. of Maryland 1970. Springer-Verlag, Bd 185, 1971. Zbl0205.41402
- [25] P. LELONG, Théorème de Banach-Steinhaus pour les polynômes, applications entières d'espaces vectoriels complexes, Séminaire Lelong 1970. Springer-Verlag, Bd. 205. Zbl0218.31012
- [26] M.C. MATOS, Holomorphic mappings and domains of holomorphy, Thesis, University of Rochester 1970. Zbl0233.32004
- [27] M.C. MATOS, Sur les applications holomorphes définies dans les espaces vectoriels topologiques de Baire, C.R. Acad. Sc., Paris t. 271, p. 599, 1970. Zbl0197.38401MR42 #5045
- [28] L. NACHBIN, Topology on spaces of holomorphic mappings. Ergebnisse der Mathematik, 47, 1969, Springer-Verlag. Zbl0172.39902MR40 #7787
- [29] L. NACHBIN, Sur les espaces vectoriels topologiques d'applications continues, C.R. Acad., Sc., Paris, t. 271, 1970, p. 596-598. Zbl0205.12402MR42 #6593
- [30] L. NACHBIN, Concerning spaces of holomorphic mappings, Dept. of Mathematics, Rutgers University, New Brunswick, 1970. Zbl0258.46027
- [31] L. NACHBIN, Topological vector spaces of continuous functions, Proc. Amer. Acad. Sc., 40, 1954, 471-474. Zbl0055.09803MR16,156h
- [32] L. NACHBIN, Holomorphic functions, domains of holomorphy, local properties, North Holland, 1970. Zbl0208.10301MR43 #558
- [33] Ph. NOVERRAZ, Pseudo convexité et convexité polynomiale. Cours IMPA (Rio) 1971, (in preparation North Holland).
- [34] Ph. NOVERRAZ, Sur la convexité fonctionnelle dans les espaces de Banach à base, C.R. Acad. Sc., Paris, t. 271, 990-992, 1970.
- [35] F. TREVES, Topological Vector Spaces, Distributions and Kernels, Academic Press 1967. Zbl0171.10402MR37 #726
- [36] M.A. ZORN, Characterisation of analytic functions in Banach spaces, Annals of Math., 2 (46), 1945, 585-593. Zbl0063.08407
Citations in EuDML Documents
top- Philip J. Boland, Seán Dineen, Holomorphic functions on fully nuclear spaces
- Philipp J. Boland, Polynomials and multilinear forms on fully nuclear spaces
- Sean Dineen, Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains
- Seán Dineen, Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.