Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on ( U )

Sean Dineen

Annales de l'institut Fourier (1973)

  • Volume: 23, Issue: 1, page 19-54
  • ISSN: 0373-0956

Abstract

top
This article is devoted to a study of locally convex topologies on H ( U ) (where U is an open subset of the locally convex topological vector space E and H ( U ) is the set of all complex valued holomorphic functions on E ). We discuss the following topologies on H ( U ) :(a) the compact open topology I 0 ,(b) the bornological topology associated with I 0 ,(c) the ported topology of Nachbin I ω ,(d) the bornological topology associated with I ω  ; and(e) the I ω topological of Nachbin.For U balanced we show these topologies are related to various kinds of convergence of the Taylor series at o . This in turn allows us to obtain criterion for equality of different topologies on H ( U ) and to construct counterexamples when we do not have equality.

How to cite

top

Dineen, Sean. "Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on ${\mathcal {H}} (U) $." Annales de l'institut Fourier 23.1 (1973): 19-54. <http://eudml.org/doc/74110>.

@article{Dineen1973,
abstract = {This article is devoted to a study of locally convex topologies on $\{\bf H\}(U)$ (where $U$ is an open subset of the locally convex topological vector space $E$ and $\{\bf H\}(U)$ is the set of all complex valued holomorphic functions on $E$). We discuss the following topologies on $\{\bf H\}(U)$:(a) the compact open topology $\{\bf I\}_0$,(b) the bornological topology associated with $\{\bf I\}_0$,(c) the ported topology of Nachbin $\{\bf I\}_\omega $,(d) the bornological topology associated with $\{\bf I\}_\omega $ ; and(e) the $\{\bf I\}_\omega $ topological of Nachbin.For $U$ balanced we show these topologies are related to various kinds of convergence of the Taylor series at $o$. This in turn allows us to obtain criterion for equality of different topologies on $\{\bf H\}(U)$ and to construct counterexamples when we do not have equality.},
author = {Dineen, Sean},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {19-54},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on $\{\mathcal \{H\}\} (U) $},
url = {http://eudml.org/doc/74110},
volume = {23},
year = {1973},
}

TY - JOUR
AU - Dineen, Sean
TI - Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on ${\mathcal {H}} (U) $
JO - Annales de l'institut Fourier
PY - 1973
PB - Association des Annales de l'Institut Fourier
VL - 23
IS - 1
SP - 19
EP - 54
AB - This article is devoted to a study of locally convex topologies on ${\bf H}(U)$ (where $U$ is an open subset of the locally convex topological vector space $E$ and ${\bf H}(U)$ is the set of all complex valued holomorphic functions on $E$). We discuss the following topologies on ${\bf H}(U)$:(a) the compact open topology ${\bf I}_0$,(b) the bornological topology associated with ${\bf I}_0$,(c) the ported topology of Nachbin ${\bf I}_\omega $,(d) the bornological topology associated with ${\bf I}_\omega $ ; and(e) the ${\bf I}_\omega $ topological of Nachbin.For $U$ balanced we show these topologies are related to various kinds of convergence of the Taylor series at $o$. This in turn allows us to obtain criterion for equality of different topologies on ${\bf H}(U)$ and to construct counterexamples when we do not have equality.
LA - eng
UR - http://eudml.org/doc/74110
ER -

References

top
  1. [1] R.M. ARON, Topological properties of the space of holomorphic mappings, Thesis, University of Rochester 1970. 
  2. [2] R.M. ARON, Sur la topologie bornologique pour l'espace d'applications holomorphes, C.R. Acad. Sc., Paris, t 272, 872-873, 1971. Zbl0206.42101MR43 #5295
  3. [3] J.A. BARROSO, Topologias nos espacos de aplicacoes holomorfas entre espacos localmente convexos, (to appear in Anais de Acad. Brasil de Cienciais). 
  4. [4] J.A. BARROSO, Topologies sur les espaces d'applications holomorphes entre des espaces localement convexes, C.R. Acad. Sc., Paris, t 271, 264-265, 1970. Zbl0217.16402MR42 #6594
  5. [5] J. BOCHNAK, J. SICIAK, Fonctions analytiques dans les espaces vectoriels réels ou complexes, C.R. Acad. Sc., Paris, t. 270, 1970, 643-646. Zbl0189.42701MR43 #7920
  6. [6] J. BOCHNAK, J. SICIAK, Analytic functions in topological vector spaces, Studia Math. 39, 1, 1971. Zbl0214.37703MR47 #2365
  7. [7] S.B. CHAE, Holomorphic germs on Banach spaces, Thesis, University of Rochester, 1969. 
  8. [8] S.B. CHAE, Sur les espaces localement de germes holomorphes, C.R. Acad. Sc., Paris, t. 271, 990-991, 1970. Zbl0201.15603MR45 #876
  9. [9] G. COEURÉ, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques, Annales de l'Institut Fourier, t. 20, 361-432, 1970. Zbl0187.39003MR43 #564
  10. [10] G. COEURÉ, Fonctionnelles analytiques sur certains espaces de Banach, Annales de l'Institut Fourier, 21, 2, 15-21, 1971. Zbl0205.41303MR49 #3541
  11. [11] S. DINEEN, Holomorphy types on a Banach space, Thesis, University of Maryland, 1969, Studia Math., 39, 241-288, 1971. Zbl0235.32013
  12. [12] S. DINEEN, Unbounded holomorphic functions on a Banach space, J. Lond. Math. Soc., Vol. 4, 3, 461-465, 1972. Zbl0244.46015MR45 #5753
  13. [13] S. DINEEN, Bounding subsets of a Banach space, Math. Annalen, 192, 61-70, (1971). Zbl0202.12803MR46 #2428
  14. [14] S. DINEEN, Holomorphic functions on (co, Xb)-Modules, Math. Annalen, 196, 106-116, 1972. Zbl0219.46021MR45 #9118
  15. [15] S. DINEEN, Topologie de Nachbin et prolongement analytique en dimension infinie, C.R. Acad. Sc., Paris, t. 271, 643-644, 1970. Zbl0198.46002MR43 #887
  16. [16] S. DINEEN, The Cartan-Thullen theorem for Banach spaces, Annali Scuola Normale Sup., Pisa, 24, 4, 667-674, 1970. Zbl0235.46037MR43 #3487
  17. [17] A. HIRSCHOWITZ, Bornologie des espaces de fonctions analytiques en dimension infinie, Séminaire P. Lelong, 1970, Springer-Verlag, Bd. 205, 1971. Zbl0225.46027
  18. [18] A. HIRSCHOWITZ, Sur les suites de fonctions analytiques, Ann. Inst. Fourier, 20, 2, 1971. Zbl0195.40905MR44 #3104
  19. [19] A. HIRSCHOWITZ, Sur un théorème de M.A. Zorn. Zbl0239.46037
  20. [20] L. HORMANDER, An introduction to complex analysis in several variables, Van Nostrand 1966. Zbl0138.06203MR34 #2933
  21. [21] J. HORVATH, Topological vector spaces and distributions, Vol. 1., Addison-Wesley 1966. Zbl0143.15101MR34 #4863
  22. [22] N.J. KALTON, Schauder decompositions and completeness, J. Lond. Math. Soc. 2, 1970 34-36. Zbl0196.13601MR41 #4185
  23. [23] N.J. KALTON, Schauder decompositions in locally convex spaces, P. Camb. Phil. Soc. 1970, 68, 377, 68-75. Zbl0196.13505MR41 #7401
  24. [24] P. LELONG, Recent results on analytic mappings and plurisubharmonic functions in topological linear spaces, Internat. Conf. on several complex variables, Univ. of Maryland 1970. Springer-Verlag, Bd 185, 1971. Zbl0205.41402
  25. [25] P. LELONG, Théorème de Banach-Steinhaus pour les polynômes, applications entières d'espaces vectoriels complexes, Séminaire Lelong 1970. Springer-Verlag, Bd. 205. Zbl0218.31012
  26. [26] M.C. MATOS, Holomorphic mappings and domains of holomorphy, Thesis, University of Rochester 1970. Zbl0233.32004
  27. [27] M.C. MATOS, Sur les applications holomorphes définies dans les espaces vectoriels topologiques de Baire, C.R. Acad. Sc., Paris t. 271, p. 599, 1970. Zbl0197.38401MR42 #5045
  28. [28] L. NACHBIN, Topology on spaces of holomorphic mappings. Ergebnisse der Mathematik, 47, 1969, Springer-Verlag. Zbl0172.39902MR40 #7787
  29. [29] L. NACHBIN, Sur les espaces vectoriels topologiques d'applications continues, C.R. Acad., Sc., Paris, t. 271, 1970, p. 596-598. Zbl0205.12402MR42 #6593
  30. [30] L. NACHBIN, Concerning spaces of holomorphic mappings, Dept. of Mathematics, Rutgers University, New Brunswick, 1970. Zbl0258.46027
  31. [31] L. NACHBIN, Topological vector spaces of continuous functions, Proc. Amer. Acad. Sc., 40, 1954, 471-474. Zbl0055.09803MR16,156h
  32. [32] L. NACHBIN, Holomorphic functions, domains of holomorphy, local properties, North Holland, 1970. Zbl0208.10301MR43 #558
  33. [33] Ph. NOVERRAZ, Pseudo convexité et convexité polynomiale. Cours IMPA (Rio) 1971, (in preparation North Holland). 
  34. [34] Ph. NOVERRAZ, Sur la convexité fonctionnelle dans les espaces de Banach à base, C.R. Acad. Sc., Paris, t. 271, 990-992, 1970. 
  35. [35] F. TREVES, Topological Vector Spaces, Distributions and Kernels, Academic Press 1967. Zbl0171.10402MR37 #726
  36. [36] M.A. ZORN, Characterisation of analytic functions in Banach spaces, Annals of Math., 2 (46), 1945, 585-593. Zbl0063.08407

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.