C-semigroups on Banach spaces and functional inequalities
Shiqi Song (1995)
Séminaire de probabilités de Strasbourg
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Shiqi Song (1995)
Séminaire de probabilités de Strasbourg
Similarity:
Zhongmin Qian, Sheng-Wu He (1995)
Séminaire de probabilités de Strasbourg
Similarity:
Gilles Pisier (1988)
Séminaire de probabilités de Strasbourg
Similarity:
F. Bethuel, G. Orlandi, D. Smets (2004)
Journées Équations aux dérivées partielles
Similarity:
We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.
Thomas S. Mountford (1993)
Séminaire de probabilités de Strasbourg
Similarity:
David Nualart, Moshe Zakai (1989)
Séminaire de probabilités de Strasbourg
Similarity:
Shigeyoshi Ogawa (1991)
Séminaire de probabilités de Strasbourg
Similarity:
L.C.G. Rogers (1989)
Séminaire de probabilités de Strasbourg
Similarity:
Alexander M. Chebotarev, Franco Fagnola (1995)
Séminaire de probabilités de Strasbourg
Similarity:
David Williams (1995)
Séminaire de probabilités de Strasbourg
Similarity:
David Williams (1978)
Séminaire de probabilités de Strasbourg
Similarity:
Tajčová, Gabriela
Similarity:
P. Gérard (2010)
ESAIM: Control, Optimisation and Calculus of Variations
Similarity:
We prove that any bounded sequence in a Hilbert homogeneous Sobolev space has a subsequence which can be decomposed as an almost-orthogonal sum of a sequence going strongly to zero in the corresponding Lebesgue space, and of a superposition of terms obtained from fixed profiles by applying sequences of translations and dilations. This decomposition contains in particular the various versions of the concentration-compactness principle.