The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A simple proof of the logarithmic Sobolev inequality on the circle”

Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics

F. Bethuel, G. Orlandi, D. Smets (2004)

Journées Équations aux dérivées partielles

Similarity:

We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension N 2 . Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.

Description of the lack of compactness for the Sobolev imbedding

P. Gérard (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We prove that any bounded sequence in a Hilbert homogeneous Sobolev space has a subsequence which can be decomposed as an almost-orthogonal sum of a sequence going strongly to zero in the corresponding Lebesgue space, and of a superposition of terms obtained from fixed profiles by applying sequences of translations and dilations. This decomposition contains in particular the various versions of the concentration-compactness principle.