Hypercontractivité pour les fermions, d'après Carlen-Lieb
Séminaire de probabilités de Strasbourg (1993)
- Volume: 27, page 86-96
Access Full Article
topHow to cite
topHu, Yao-Zhong. "Hypercontractivité pour les fermions, d'après Carlen-Lieb." Séminaire de probabilités de Strasbourg 27 (1993): 86-96. <http://eudml.org/doc/113862>.
@article{Hu1993,
author = {Hu, Yao-Zhong},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Gross conjecture; fermionic hypercontractivity; Fermi second quantization; Clifford algebra; logarithmic Sobolev inequality},
language = {eng},
pages = {86-96},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Hypercontractivité pour les fermions, d'après Carlen-Lieb},
url = {http://eudml.org/doc/113862},
volume = {27},
year = {1993},
}
TY - JOUR
AU - Hu, Yao-Zhong
TI - Hypercontractivité pour les fermions, d'après Carlen-Lieb
JO - Séminaire de probabilités de Strasbourg
PY - 1993
PB - Springer - Lecture Notes in Mathematics
VL - 27
SP - 86
EP - 96
LA - eng
KW - Gross conjecture; fermionic hypercontractivity; Fermi second quantization; Clifford algebra; logarithmic Sobolev inequality
UR - http://eudml.org/doc/113862
ER -
References
top- [1] P.J. Bushell et G.B. Trustrum. Trace inequalities for positive definite power products, Linear Alg. Appl.132, 1990, 173-178. Zbl0701.15015MR1058100
- [2] E.A. Carlen et E.H. Lieb. Optimal hypercontractivity for Fermi fields and related non-commutative integration inequalities, Preprint, 1992. Zbl0796.46054MR1228524
- [3] J. Dixmier. Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France, 81, 1953, 222-245. Zbl0050.11501MR59485
- [4] L. Gross. Existence and uniqueness of physical ground states, J. Funct. Anal.10, 1972, 52-109. Zbl0237.47012MR339722
- [5] L. Gross. Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form, Duke Math. J., 42, 1975, 383-396. Zbl0359.46038MR372613
- [6] Y.Z. Hu. Calculs formels sur les E.D.S. de Stratonovitch, Sém. Prob. XXIV, LNM1426, Springer, 1990, 453-460. Zbl0702.60055MR1071561
- [7] E.H. Lieb et W. Thirring. Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies Math. Phys. in Honor of V. Bargmann, Princeton, N. J., 1976, 269-303. Zbl0342.35044
- [8] M. Lindsay. Gaussian hypercontractivity revisited, J. Funct. Anal., 92, 1990, 313-324. Zbl0713.46050MR1069248
- [9] M. Lindsay et P.A. Meyer. Fermion hypercontractivity, Quantum ProbabilityVII, World Scientific1992, à paraître. Zbl0797.60090MR1186665
- [10] P.A. Meyer. Eléments de probabilités quantiques, exposés I-V, Sém. Prob. XX, SpringerLNM1204, 1986, 186-312. Zbl0604.60001MR942022
- [11] P.A. Meyer. Quantum Probability for Probabilists, Lecture Notes in Math.1538, 1993. Zbl0773.60098MR1222649
- [12] I.E. Segal. A noncommutative extension of abstract integration, Ann. of M.57 (1953), 401-457. Zbl0051.34201MR54864
- [13] I. Wilde. Hypercontractivity for fermions, J. Math. Phys.14 (1973), 791-792. MR334768
- [14] F.J. Yeadon. Noncommutative Lp-spaces, Proc. Cambridge Philos. Soc.77 (1975), 91-102. Zbl0327.46068
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.