Hypercontractivité pour les fermions, d'après Carlen-Lieb

Yao-Zhong Hu

Séminaire de probabilités de Strasbourg (1993)

  • Volume: 27, page 86-96

How to cite

top

Hu, Yao-Zhong. "Hypercontractivité pour les fermions, d'après Carlen-Lieb." Séminaire de probabilités de Strasbourg 27 (1993): 86-96. <http://eudml.org/doc/113862>.

@article{Hu1993,
author = {Hu, Yao-Zhong},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Gross conjecture; fermionic hypercontractivity; Fermi second quantization; Clifford algebra; logarithmic Sobolev inequality},
language = {eng},
pages = {86-96},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Hypercontractivité pour les fermions, d'après Carlen-Lieb},
url = {http://eudml.org/doc/113862},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Hu, Yao-Zhong
TI - Hypercontractivité pour les fermions, d'après Carlen-Lieb
JO - Séminaire de probabilités de Strasbourg
PY - 1993
PB - Springer - Lecture Notes in Mathematics
VL - 27
SP - 86
EP - 96
LA - eng
KW - Gross conjecture; fermionic hypercontractivity; Fermi second quantization; Clifford algebra; logarithmic Sobolev inequality
UR - http://eudml.org/doc/113862
ER -

References

top
  1. [1] P.J. Bushell et G.B. Trustrum. Trace inequalities for positive definite power products, Linear Alg. Appl.132, 1990, 173-178. Zbl0701.15015MR1058100
  2. [2] E.A. Carlen et E.H. Lieb. Optimal hypercontractivity for Fermi fields and related non-commutative integration inequalities, Preprint, 1992. Zbl0796.46054MR1228524
  3. [3] J. Dixmier. Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France, 81, 1953, 222-245. Zbl0050.11501MR59485
  4. [4] L. Gross. Existence and uniqueness of physical ground states, J. Funct. Anal.10, 1972, 52-109. Zbl0237.47012MR339722
  5. [5] L. Gross. Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form, Duke Math. J., 42, 1975, 383-396. Zbl0359.46038MR372613
  6. [6] Y.Z. Hu. Calculs formels sur les E.D.S. de Stratonovitch, Sém. Prob. XXIV, LNM1426, Springer, 1990, 453-460. Zbl0702.60055MR1071561
  7. [7] E.H. Lieb et W. Thirring. Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Studies Math. Phys. in Honor of V. Bargmann, Princeton, N. J., 1976, 269-303. Zbl0342.35044
  8. [8] M. Lindsay. Gaussian hypercontractivity revisited, J. Funct. Anal., 92, 1990, 313-324. Zbl0713.46050MR1069248
  9. [9] M. Lindsay et P.A. Meyer. Fermion hypercontractivity, Quantum ProbabilityVII, World Scientific1992, à paraître. Zbl0797.60090MR1186665
  10. [10] P.A. Meyer. Eléments de probabilités quantiques, exposés I-V, Sém. Prob. XX, SpringerLNM1204, 1986, 186-312. Zbl0604.60001MR942022
  11. [11] P.A. Meyer. Quantum Probability for Probabilists, Lecture Notes in Math.1538, 1993. Zbl0773.60098MR1222649
  12. [12] I.E. Segal. A noncommutative extension of abstract integration, Ann. of M.57 (1953), 401-457. Zbl0051.34201MR54864
  13. [13] I. Wilde. Hypercontractivity for fermions, J. Math. Phys.14 (1973), 791-792. MR334768
  14. [14] F.J. Yeadon. Noncommutative Lp-spaces, Proc. Cambridge Philos. Soc.77 (1975), 91-102. Zbl0327.46068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.