Stability of stochastic differential equations in manifolds

Marc Arnaudon; Anton Thalmaier

Séminaire de probabilités de Strasbourg (1998)

  • Volume: 32, page 188-214

How to cite

top

Arnaudon, Marc, and Thalmaier, Anton. "Stability of stochastic differential equations in manifolds." Séminaire de probabilités de Strasbourg 32 (1998): 188-214. <http://eudml.org/doc/113983>.

@article{Arnaudon1998,
author = {Arnaudon, Marc, Thalmaier, Anton},
journal = {Séminaire de probabilités de Strasbourg},
language = {eng},
pages = {188-214},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Stability of stochastic differential equations in manifolds},
url = {http://eudml.org/doc/113983},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Arnaudon, Marc
AU - Thalmaier, Anton
TI - Stability of stochastic differential equations in manifolds
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 188
EP - 214
LA - eng
UR - http://eudml.org/doc/113983
ER -

References

top
  1. [C1] Cohen ( S.) — Géométrie différentielle stochastique avec sauts 1, Stochastics and Stochastics Reports, t. 56, 1996, p. 179-203. Zbl0911.58044MR1396760
  2. [C2] Cohen ( S.) — Géométrie différentielle stochastique avec sauts 2: discrétisation et applications des EDS avec sauts, Stochastics and Stochastics Reports, t. 56, 1996, p. 205-225. Zbl0893.58058MR1396761
  3. [E1] Emery ( M.) — Une topologie sur l'espace des semimartingales, Séminaire de Probabilités XIII, Lecture Notes in Mathematics, Vol 721, Springer, 1979, p. 260-280. Zbl0406.60057MR544800
  4. [E2] Emery ( M.) — Equations différentielles stochastiques lipschitziennes: étude de la stabilité, Séminaire de Probabilités XIII, Lecture Notes in Mathematics, Vol 721, Springer, 1979, p. 281-293. Zbl0408.60064MR544801
  5. [E3] Emery ( M.) — On two transfer principes in stochastic differential geometry, Séminaire de Probabilités XXIV, Lecture Notes in Mathematics, Vol 1426, Springer, 1989, p. 407-441. Zbl0704.60066MR1071558
  6. [E4] Emery ( M.) — Stochastic calculus in manifolds. — Springer, 1989. Zbl0697.60060MR1030543
  7. [K] Kendall ( W.S.) — Convex geometry and nonconfluent Γ-martingales II: Wellposedness and Γ-martingale convergence, Stochastics, t. 38, 1992, p. 135-147. Zbl0758.58036MR1274899
  8. [Pi] Picard ( J.) — Convergence in probability for perturbed stochastic integral equations, Probability Theory and Related Fields, t. 81, 1989, p. 383-451. Zbl0659.60088MR983091
  9. [Pr] Protter ( P.) — Stochastic Integration and Differential Equations. A New Approach. — Springer, 1990. Zbl0694.60047MR1037262
  10. [Y-I] Yano ( K.), Ishihara ( S.) — Tangent and Cotangent Bundles. — Marcel Dekker, Inc., New York, 1973. Zbl0262.53024MR350650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.