Brownian motion with respect to time-changing riemannian metrics, applications to Ricci flow
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 2, page 515-538
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Arnaudon and A. Thalmaier. Complete lifts of connections and stochastic Jacobi fields. J. Math. Pures Appl. (9) 77 (1998) 283–315. Zbl0916.58045MR1618537
- [2] M. Arnaudon and A. Thalmaier. Stability of stochastic differential equations in manifolds. In Séminaire de Probabilités, XXXII 188–214. Lecture Notes in Math. 1686. Springer, Berlin, 1998. Zbl0918.60040MR1655151
- [3] M. Arnaudon and A. Thalmaier. Horizontal martingales in vector bundles. In Séminaire de Probabilités, XXXVI 419–456. Lecture Notes in Math. 1801. Springer, Berlin, 2003. Zbl1046.58013MR1971603
- [4] M. Arnaudon, R. O. Bauer and A. Thalmaier. A probabilistic approach to the Yang–Mills heat equation. J. Math. Pures Appl. (9) 81 (2002) 143–166. Zbl1042.58021MR1994607
- [5] B. Chow and D. Knopf. The Ricci Flow: An Introduction. Mathematical Surveys and Monographs 110. Amer. Math. Soc., Providence, RI, 2004. Zbl1086.53085MR2061425
- [6] M. Cranston. Gradient estimates on manifolds using coupling. J. Funct. Anal. 99 (1991) 110–124. Zbl0770.58038MR1120916
- [7] D. M. DeTurck. Deforming metrics in the direction of their Ricci tensors. J. Differential Geom. 18 (1983) 157–162. Zbl0517.53044MR697987
- [8] K. D. Elworthy and X.-M. Li. Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 (1994) 252–286. Zbl0813.60049MR1297021
- [9] K. D. Elworthy and M. Yor. Conditional expectations for derivatives of certain stochastic flows. In Séminaire de Probabilités, XXVII 159–172. Lecture Notes in Math. 1557. Springer, Berlin, 1993. Zbl0795.60046MR1308561
- [10] K. D. Elworthy, Y. Le Jan and X.-M. Li. On the Geometry of Diffusion Operators and Stochastic Flows. Lecture Notes in Math. 1720. Springer, Berlin, 1999. Zbl0942.58004MR1735806
- [11] M. Emery. Une topologie sur l’espace des semimartingales. In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78) 260–280. Lecture Notes in Math. 721. Springer, Berlin, 1979. Zbl0406.60057MR544800
- [12] M. Émery. Stochastic Calculus in Manifolds: With an Appendix by P.-A. Meyer. Springer, Berlin, 1989. Zbl0697.60060MR1030543
- [13] M. Émery. On two transfer principles in stochastic differential geometry. In Séminaire de Probabilités, XXIV, 1988/89 407–441. Lecture Notes in Math. 1426. Springer, Berlin, 1990. Zbl0704.60066MR1071558
- [14] R. S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geom. 17 (1982) 255–306. Zbl0504.53034MR664497
- [15] E. P. Hsu. Stochastic Analysis on Manifolds Graduate Studies in Mathematics 38. Amer. Math. Soc., Providence, RI, 2002. Zbl0994.58019MR1882015
- [16] J. Jost. Harmonic Mappings between Riemannian Manifolds. Proceedings of the Centre for Mathematical Analysis, Australian National University 4. Australian National University Centre for Mathematical Analysis, Canberra, 1984. Zbl0542.58001MR756629
- [17] J. Jost. Riemannian Geometry and Geometric Analysis, 4th edition. Springer, Berlin, 2005. Zbl0828.53002MR2165400
- [18] W. S. Kendall. Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19 (1986) 111–129. Zbl0584.58045MR864339
- [19] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry. Vol. I. Wiley Classics Library. Wiley, New York, 1996. Reprint of the 1963 original, Wiley. Zbl0119.37502MR1393940
- [20] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics 24. Cambridge Univ. Press, Cambridge, 1990. Zbl0743.60052MR1070361
- [21] J. M. Lee. Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics 176. Springer, New York, 1997. Zbl0905.53001MR1468735
- [22] D. W. Stroock and S. R. Srinivasa Varadhan. Multidimensional Diffusion Processes. Classics in Mathematics. Springer, Berlin, 2006. Reprint of the 1997 edition. Zbl1103.60005MR2190038
- [23] A. Thalmaier and F.-Y. Wang. Gradient estimates for harmonic functions on regular domains in Riemannian manifolds. J. Funct. Anal. 155 (1998) 109–124. Zbl0914.58042MR1622800
- [24] P. Topping. Lectures on the Ricci Flow. London Mathematical Society Lecture Note Series 325. Cambridge Univ. Press, Cambridge, 2006. Zbl1105.58013MR2265040