Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion
Séminaire de probabilités de Strasbourg (2000)
- Volume: 34, page 239-256
Access Full Article
topHow to cite
topHarris, Simon C.. "Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion." Séminaire de probabilités de Strasbourg 34 (2000): 239-256. <http://eudml.org/doc/114040>.
@article{Harris2000,
author = {Harris, Simon C.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {martingales; long-term behaviour; branching diffusion; martingale expansion},
language = {eng},
pages = {239-256},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion},
url = {http://eudml.org/doc/114040},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Harris, Simon C.
TI - Convergence of a “Gibbs-Boltzmann” random measure for a typed branching diffusion
JO - Séminaire de probabilités de Strasbourg
PY - 2000
PB - Springer - Lecture Notes in Mathematics
VL - 34
SP - 239
EP - 256
LA - eng
KW - martingales; long-term behaviour; branching diffusion; martingale expansion
UR - http://eudml.org/doc/114040
ER -
References
top- [1] Biggins, J. (1992) Uniform convergence in the branching random walk, Ann. Probab., 20, 137-151 Zbl0748.60080MR1143415
- [2] Breiman, L. (1968) Probability. Addison-Wesley, London. Zbl0174.48801MR229267
- [3] Champneys, A., Harris, S.C., Toland, J.F., Warren, J. & Williams, D. (1995) Analysis, algebra and probability for a coupled system of reaction-diffusion equations, Phil. Trans. Roy. Soc. London (A), 350, 69-112. Zbl0824.60070
- [4] Chauvin, B. & Rouault, A. (1997) Boltzmann-Gibbs weights in the branching random walk. Classical and Modern Branching Processes (ed. Athreya, Krishna, et al.), IMA Vol. Math. Appl., 84, pp 41-50. Springer, New York. Zbl0866.60074
- [5] Git, Y. & Harris, S.C. (2000) Large-deviations and martingales for a typed branching diffusion: II, (In preparation).
- [6] Harris, S.C. & Williams, D. (1996) Large-deviations and martingales for a typed branching diffusion : I, Astérisque, 236, 133-154. Zbl0857.60088
- [7] Harris, S.C. (2000) A typed branching diffusion, a reaction-diffusion equation and travelling-waves. (In preparation).
- [8] McKean, H.P. (1975) Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math.28, 323-331. Zbl0316.35053MR400428
- [9] McKean, H.P. (1976) Correction to the above. Comm. Pure Appl. Math.29, 553-554. Zbl0354.35051MR423558
- [10] Neveu, J. (1987) Multiplicative martingales for spatial branching processes. Seminar on Stochastic Processes (ed. E.Çinlar, K.Chung and R.Getoor), Progress in Probability & Statistics. 15. pp. 223-241. Birkhäuser, Boston. Zbl0652.60089
- [11] Revuz, D. & Yor, M. (1991) Continuous martingales and Brownian motion. Springer, Berlin. Zbl0731.60002
- [12] Rogers, L.C.G. & Williams, D. (1994) Diffusions, Markov processes and martingales. Volume 1: Foundations. (Second Edition). Wiley,Chichester and New York. Zbl0826.60002
- [13] Rogers, L.C.G. & Williams, D. (1987) Diffusions, Markov processes and martingales. Volume 2: Itô Calculus. Wiley, Chichester and New York. Zbl0627.60001
- [14] Szegö, G. (1967) Orthogonal Polynomials (Third Edition). American Mathematical Society Colloquium Publications, Volume XXIII. Zbl65.0278.03MR310533
Citations in EuDML Documents
top- A. E. Kyprianou, Travelling wave solutions to the K-P-P equation : alternatives to Simon Harris' probabilistic analysis
- János Engländer, Simon C. Harris, Andreas E. Kyprianou, Strong law of large numbers for branching diffusions
- S. C. Harris, R. Knobloch, A. E. Kyprianou, Strong law of large numbers for fragmentation processes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.