Strong law of large numbers for fragmentation processes

S. C. Harris; R. Knobloch; A. E. Kyprianou

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 1, page 119-134
  • ISSN: 0246-0203

Abstract

top
In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1≥η>0.

How to cite

top

Harris, S. C., Knobloch, R., and Kyprianou, A. E.. "Strong law of large numbers for fragmentation processes." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 119-134. <http://eudml.org/doc/241649>.

@article{Harris2010,
abstract = {In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1≥η&gt;0.},
author = {Harris, S. C., Knobloch, R., Kyprianou, A. E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fragmentation processes; strong law of large numbers; additive martingales},
language = {eng},
number = {1},
pages = {119-134},
publisher = {Gauthier-Villars},
title = {Strong law of large numbers for fragmentation processes},
url = {http://eudml.org/doc/241649},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Harris, S. C.
AU - Knobloch, R.
AU - Kyprianou, A. E.
TI - Strong law of large numbers for fragmentation processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 119
EP - 134
AB - In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1≥η&gt;0.
LA - eng
KW - fragmentation processes; strong law of large numbers; additive martingales
UR - http://eudml.org/doc/241649
ER -

References

top
  1. [1] S. Asmussen and H. Hering. Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrsch. Verw. Gebiete 36 (1976) 195–212. Zbl0325.60081MR420889
  2. [2] S. Asmussen and H. Hering. Strong limit theorems for supercritical immigration-branching processes. Math. Scand. 39 (1977) 327–342. Zbl0348.60117MR438498
  3. [3] A.-L. Basdevant. Fragmentation of ordered partitions and intervals. Electron J. Probab. 11 (2006) 394–417. Zbl1109.60058MR2223041
  4. [4] J. Berestycki. Multifractal spectrum of fragmentations. J. Stat. Phys. 113 (2003) 411–430. Zbl1033.82012MR2013691
  5. [5] J. Bertoin. Subordinators: Examples and applications. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997) 1–91. Lecture Notes in Math. 1717. Springer, Berlin, 1999. Zbl0955.60046MR1746300
  6. [6] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 319–340. Zbl1002.60072MR1899456
  7. [7] J. Bertoin. The asymptotic behaviour of fragmentation processes. J. Eur. Math. Soc. 5 (2003) 395–416. Zbl1042.60042MR2017852
  8. [8] J. Bertoin. On small masses in self-similar fragmentations. Stochastic Process. Appl. 109 (2004) 13–22. Zbl1075.60092MR2024841
  9. [9] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Univ. Press, 2006. Zbl1107.60002MR2253162
  10. [10] J. Bertoin and A. Gnedin. Asymptotic laws for nonconservative self-similar fragmentations. Electron. J. Probab. 9 (2004) 575–593. Zbl1064.60075MR2080610
  11. [11] J. Bertoin and S. Martinez. Fragmentation energy. Adv. Appl. Probab. 37 (2005) 553–570. Zbl1080.60080MR2144567
  12. [12] J. Bertoin and A. Rouault. Discritization methods for homogenous fragmentations. J. London Math. Soc. 72 (2005) 91–109. Zbl1077.60053MR2145730
  13. [13] J. Bertoin and A. Rouault. Additive martingales and probability tilting for homogeneous fragmentations. Unpublished manuscript, 2005. Available at http://www.proba.jussieu.fr/mathdoc/textes/PMA-808.pdf. Zbl1077.60053
  14. [14] J. Bertoin and A. Rouault. Asymptotic behaviour of the presence probability in branching random walks and fragmentations. Unpublished manuscript, 2004. Available at http://hal.ccsd.cnrs.fr/ccsd-00002955. 
  15. [15] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37. Zbl0356.60053MR433619
  16. [16] J. D. Biggins. Uniform convergence of martingales in the branching random walk. Ann. Probab. 20 (1992) 137–151. Zbl0748.60080MR1143415
  17. [17] N. Bingham and R. A. Doney. Asymptotic properties of supercritical branching processes. II: Crump–Mode and Jirana processes. Adv. Appl. Probab. 7 (1975) 66–82. Zbl0308.60049MR378125
  18. [18] Z.-Q. Chen and Y. Shiozawa. Limit theorems for branching Markov processes. J. Funct. Anal. 250 (2007) 374–399. Zbl1125.60087MR2352485
  19. [19] Z.-Q. Chen, Y. Ren and H. Wang. An almost sure scaling limit theorem for Dawson–Watanabe superprocesses J. Funct. Anal. 254 (2008) 1988–2019. Zbl1138.60054MR2397881
  20. [20] J. Engländer. Law of large numbers for superdiffusions: The non-ergodic case. Ann. Inst. H. Poincaré Probab. Statist. (2009). To appear. Zbl1172.60022MR2500226
  21. [21] J. Engländer, S. C. Harris and A. E. Kyprianou. Strong law of large numbers for branching diffusion. Ann. Inst. H. Poincaré Probab. Statist. (2009). To appear. Zbl1196.60139MR2641779
  22. [22] J. Engländer and A. Winter. Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2007) 171–185. Zbl1093.60058MR2199796
  23. [23] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to Lp-convergence of martingales. In Séminaire de Probabilités, XLII, 2008. To appear, 2009. Zbl1193.60100MR2599214
  24. [24] S. C. Harris. Convergence of a Gibbs–Boltzmann random measure for a typed branching diffusion. In Séminaire de Probabilités, XXXIV 239–256. Lecture Notes in Math. 1729. Springer, Berlin, 2000. Zbl0985.60053MR1768067
  25. [25] S. C. Harris and D. Williams. Large-deviations and martingales for a typed branching diffusion: I. Astérisque 236 (1996) 133–154. Zbl0857.60088MR1417979
  26. [26] P. Jagers. Branching Processes with Biological Applications. Wiley, London, 1975. Zbl0356.60039MR488341
  27. [27] N. Krell. Multifractal spectra and precise rates of decay in homogeneous fragmentations. Stochastic Process. Appl. 118 (2008) 897–916. Zbl1141.60064MR2418249
  28. [28] R. Lyons. A simple path to Biggins’ martingale convergence for branching random walk. In Classical and Modern Branching Processes (Minneapolis, MN, 1994) 217–221. IMA Vol. Math. Appl. 84. Springer, New York, 1997. Zbl0897.60086MR1601749
  29. [29] O. Nerman. On the convergence of subcritical general (C–M–J) branching processes. Z. Wahrsch. Verw. Gebiete 57 (1981) 365–395. Zbl0451.60078MR629532
  30. [30] K. Uchiyama. Spatial growth of branching processes of particles living in ℝd. Ann. Probab. 10 (1982) 896–918. Zbl0499.60088MR672291

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.