Strong law of large numbers for fragmentation processes
S. C. Harris; R. Knobloch; A. E. Kyprianou
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 119-134
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topHarris, S. C., Knobloch, R., and Kyprianou, A. E.. "Strong law of large numbers for fragmentation processes." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 119-134. <http://eudml.org/doc/241649>.
@article{Harris2010,
abstract = {In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1≥η>0.},
author = {Harris, S. C., Knobloch, R., Kyprianou, A. E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {fragmentation processes; strong law of large numbers; additive martingales},
language = {eng},
number = {1},
pages = {119-134},
publisher = {Gauthier-Villars},
title = {Strong law of large numbers for fragmentation processes},
url = {http://eudml.org/doc/241649},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Harris, S. C.
AU - Knobloch, R.
AU - Kyprianou, A. E.
TI - Strong law of large numbers for fragmentation processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 119
EP - 134
AB - In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1≥η>0.
LA - eng
KW - fragmentation processes; strong law of large numbers; additive martingales
UR - http://eudml.org/doc/241649
ER -
References
top- [1] S. Asmussen and H. Hering. Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrsch. Verw. Gebiete 36 (1976) 195–212. Zbl0325.60081MR420889
- [2] S. Asmussen and H. Hering. Strong limit theorems for supercritical immigration-branching processes. Math. Scand. 39 (1977) 327–342. Zbl0348.60117MR438498
- [3] A.-L. Basdevant. Fragmentation of ordered partitions and intervals. Electron J. Probab. 11 (2006) 394–417. Zbl1109.60058MR2223041
- [4] J. Berestycki. Multifractal spectrum of fragmentations. J. Stat. Phys. 113 (2003) 411–430. Zbl1033.82012MR2013691
- [5] J. Bertoin. Subordinators: Examples and applications. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997) 1–91. Lecture Notes in Math. 1717. Springer, Berlin, 1999. Zbl0955.60046MR1746300
- [6] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 319–340. Zbl1002.60072MR1899456
- [7] J. Bertoin. The asymptotic behaviour of fragmentation processes. J. Eur. Math. Soc. 5 (2003) 395–416. Zbl1042.60042MR2017852
- [8] J. Bertoin. On small masses in self-similar fragmentations. Stochastic Process. Appl. 109 (2004) 13–22. Zbl1075.60092MR2024841
- [9] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge Univ. Press, 2006. Zbl1107.60002MR2253162
- [10] J. Bertoin and A. Gnedin. Asymptotic laws for nonconservative self-similar fragmentations. Electron. J. Probab. 9 (2004) 575–593. Zbl1064.60075MR2080610
- [11] J. Bertoin and S. Martinez. Fragmentation energy. Adv. Appl. Probab. 37 (2005) 553–570. Zbl1080.60080MR2144567
- [12] J. Bertoin and A. Rouault. Discritization methods for homogenous fragmentations. J. London Math. Soc. 72 (2005) 91–109. Zbl1077.60053MR2145730
- [13] J. Bertoin and A. Rouault. Additive martingales and probability tilting for homogeneous fragmentations. Unpublished manuscript, 2005. Available at http://www.proba.jussieu.fr/mathdoc/textes/PMA-808.pdf. Zbl1077.60053
- [14] J. Bertoin and A. Rouault. Asymptotic behaviour of the presence probability in branching random walks and fragmentations. Unpublished manuscript, 2004. Available at http://hal.ccsd.cnrs.fr/ccsd-00002955.
- [15] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37. Zbl0356.60053MR433619
- [16] J. D. Biggins. Uniform convergence of martingales in the branching random walk. Ann. Probab. 20 (1992) 137–151. Zbl0748.60080MR1143415
- [17] N. Bingham and R. A. Doney. Asymptotic properties of supercritical branching processes. II: Crump–Mode and Jirana processes. Adv. Appl. Probab. 7 (1975) 66–82. Zbl0308.60049MR378125
- [18] Z.-Q. Chen and Y. Shiozawa. Limit theorems for branching Markov processes. J. Funct. Anal. 250 (2007) 374–399. Zbl1125.60087MR2352485
- [19] Z.-Q. Chen, Y. Ren and H. Wang. An almost sure scaling limit theorem for Dawson–Watanabe superprocesses J. Funct. Anal. 254 (2008) 1988–2019. Zbl1138.60054MR2397881
- [20] J. Engländer. Law of large numbers for superdiffusions: The non-ergodic case. Ann. Inst. H. Poincaré Probab. Statist. (2009). To appear. Zbl1172.60022MR2500226
- [21] J. Engländer, S. C. Harris and A. E. Kyprianou. Strong law of large numbers for branching diffusion. Ann. Inst. H. Poincaré Probab. Statist. (2009). To appear. Zbl1196.60139MR2641779
- [22] J. Engländer and A. Winter. Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2007) 171–185. Zbl1093.60058MR2199796
- [23] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to Lp-convergence of martingales. In Séminaire de Probabilités, XLII, 2008. To appear, 2009. Zbl1193.60100MR2599214
- [24] S. C. Harris. Convergence of a Gibbs–Boltzmann random measure for a typed branching diffusion. In Séminaire de Probabilités, XXXIV 239–256. Lecture Notes in Math. 1729. Springer, Berlin, 2000. Zbl0985.60053MR1768067
- [25] S. C. Harris and D. Williams. Large-deviations and martingales for a typed branching diffusion: I. Astérisque 236 (1996) 133–154. Zbl0857.60088MR1417979
- [26] P. Jagers. Branching Processes with Biological Applications. Wiley, London, 1975. Zbl0356.60039MR488341
- [27] N. Krell. Multifractal spectra and precise rates of decay in homogeneous fragmentations. Stochastic Process. Appl. 118 (2008) 897–916. Zbl1141.60064MR2418249
- [28] R. Lyons. A simple path to Biggins’ martingale convergence for branching random walk. In Classical and Modern Branching Processes (Minneapolis, MN, 1994) 217–221. IMA Vol. Math. Appl. 84. Springer, New York, 1997. Zbl0897.60086MR1601749
- [29] O. Nerman. On the convergence of subcritical general (C–M–J) branching processes. Z. Wahrsch. Verw. Gebiete 57 (1981) 365–395. Zbl0451.60078MR629532
- [30] K. Uchiyama. Spatial growth of branching processes of particles living in ℝd. Ann. Probab. 10 (1982) 896–918. Zbl0499.60088MR672291
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.