Strong law of large numbers for branching diffusions
János Engländer; Simon C. Harris; Andreas E. Kyprianou
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 279-298
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Asmussen and H. Hering. Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrsch. Verw. Gebiete 36 (1976) 195–212. Zbl0325.60081MR420889
- [2] S. Asmussen and H. Hering. Strong limit theorems for supercritical immigration-branching processes. Math. Scand. 39 (1977) 327–342. Zbl0348.60117MR438498
- [3] K. Athreya. Change of measures for Markov chains and the LlogL theorem for branching processes. Bernoulli 6 (2000) 323–338. Zbl0969.60076MR1748724
- [4] J. Biggins. Uniform convergence in the branching random walk. Ann. Probab. 20 (1992) 137–151. Zbl0748.60080MR1143415
- [5] J. D. Biggins and A. E. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab. 36 (2004) 544–581. Zbl1056.60082MR2058149
- [6] A. Champneys, S. C. Harris, J. Toland, J. Warren and D. Williams. Algebra, analysis and probability for a coupled system of reaction-diffusion equations. Philos. Trans. R. Soc. Lond. Ser. A 350 (1995) 69–112. Zbl0824.60070MR1325205
- [7] B. Chauvin and A. Rouault. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields 80 (1988) 299–314. Zbl0653.60077MR968823
- [8] Z.-Q. Chen and Y. Shiozawa. Limit theorems for branching Markov processes. J. Funct. Anal. 250 (2007) 374–399. Zbl1125.60087MR2352485
- [9] Z.-Q. Chen, Y. Ren and H. Wang. An almost sure scaling limit theorem for Dawson–Watanabe superprocesses J. Funct. Anal. 254 (2008) 1988–2019. Zbl1138.60054MR2397881
- [10] D. A. Dawson. Measure-valued Markov processes. In Ecole d’Eté Probabilités de Saint Flour XXI 1–260. Lecture Notes in Math. 1541. Springer, Berlin, 1993. Zbl0799.60080MR1242575
- [11] E. B. Dynkin. An Introduction to Branching Measure-Valued Processes. CRM Monograph Series 6. Amer. Math. Soc., Providence, RI, 1994. Zbl0824.60001MR1280712
- [12] J. Engländer. Branching diffusions, superdiffusions and random media. Probab. Surv. 4 (2007) 303–364. Zbl1189.60143MR2368953
- [13] J. Engländer. Law of large numbers for superdiffusions: The non-ergodic case. Ann. Inst. H. Poincare Probab. Statist. 45 (2009) 1–6. Zbl1172.60022MR2500226
- [14] J. Engländer and A. Kyprianou. Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2003) 78–99. Zbl1056.60083MR2040776
- [15] J. Engländer and R. Pinsky. On the construction and support properties of measure-valued diffusions on D⊆Rd with spatially dependent branching. Ann. Probab. 27 (1999) 684–730. Zbl0979.60078MR1698955
- [16] J. Engländer and D. Turaev. A scaling limit theorem for a class of superdiffusions. Ann. Probab. 30 (2002) 683–722. Zbl1014.60080MR1905855
- [17] J. Engländer and A. Winter. Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincare Probab. Statist. 42 (2006) 171–185. Zbl1093.60058MR2199796
- [18] A. Etheridge. An Introduction to Superprocesses. University Lecture Series 20. Amer. Math. Soc., Providence, RI, 2000. Zbl0971.60053MR1779100
- [19] S. N. Evans. Two representations of a superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 959–971. Zbl0784.60052MR1249698
- [20] Y. Git, J. W. Harris and S. C. Harris. Exponential growth rates in a typed branching diffusion. Ann. Appl. Probab. 17 (2007) 609–653. Zbl1131.60077MR2308337
- [21] R. Hardy and S. C. Harris. A conceptual approach to a path result for branching Brownian motion. Stochastic Process Appl. 116 (2006) 1992–2013. Zbl1114.60065MR2307069
- [22] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to Lp-convergence of martingales. In Séminaire de Probabilités XLII. C. Donati-Martin, M. Émery, A. Rouault and C. Stricker (Eds). 1979, 2009. Zbl1193.60100MR2599214
- [23] S. C. Harris. Convergence of a “Gibbs–Boltzman” random measure for a typed branching diffusion. In Séminaire de Probabilités XXXIV 239–256. Lecture Notes in Math. 1729. Springer, Berlin, 2000. Zbl0985.60053MR1768067
- [24] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin, 2003. Zbl1018.60002MR1943877
- [25] O. Kallenberg. Stability of critical cluster fields. Math. Nachr. 77 (1977) 7–43. Zbl0361.60058MR443078
- [26] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of L log L criteria for mean behaviour of branching processes. Ann. Probab. 23 (1995) 1125–1138. Zbl0840.60077MR1349164
- [27] R. G. Pinsky. Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, Cambridge, 1995. Zbl0858.31001MR1326606
- [28] R. G. Pinsky. Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24 (1996) 237–267. Zbl0854.60087MR1387634
- [29] S. Watanabe. A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8 (1968) 141–167. Zbl0159.46201MR237008