Strong law of large numbers for branching diffusions

János Engländer; Simon C. Harris; Andreas E. Kyprianou

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 1, page 279-298
  • ISSN: 0246-0203

Abstract

top
Let X be the branching particle diffusion corresponding to the operator Lu+β(u2−u) on D⊆ℝd (where β≥0 and β≢0). Let λc denote the generalized principal eigenvalue for the operator L+β on D and assume that it is finite. When λc>0 and L+β−λc satisfies certain spectral theoretical conditions, we prove that the random measure exp{−λct}Xt converges almost surely in the vague topology as t tends to infinity. This result is motivated by a cluster of articles due to Asmussen and Hering dating from the mid-seventies as well as the more recent work concerning analogous results for superdiffusions of [Ann. Probab.30 (2002) 683–722, Ann. Inst. H. Poincaré Probab. Statist.42 (2006) 171–185]. We extend significantly the results in [Z. Wahrsch. Verw. Gebiete36 (1976) 195–212, Math. Scand.39 (1977) 327–342, J. Funct. Anal.250 (2007) 374–399] and include some key examples of the branching process literature. As far as the proofs are concerned, we appeal to modern techniques concerning martingales and “spine” decompositions or “immortal particle pictures.”

How to cite

top

Engländer, János, Harris, Simon C., and Kyprianou, Andreas E.. "Strong law of large numbers for branching diffusions." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 279-298. <http://eudml.org/doc/240655>.

@article{Engländer2010,
abstract = {Let X be the branching particle diffusion corresponding to the operator Lu+β(u2−u) on D⊆ℝd (where β≥0 and β≢0). Let λc denote the generalized principal eigenvalue for the operator L+β on D and assume that it is finite. When λc&gt;0 and L+β−λc satisfies certain spectral theoretical conditions, we prove that the random measure exp\{−λct\}Xt converges almost surely in the vague topology as t tends to infinity. This result is motivated by a cluster of articles due to Asmussen and Hering dating from the mid-seventies as well as the more recent work concerning analogous results for superdiffusions of [Ann. Probab.30 (2002) 683–722, Ann. Inst. H. Poincaré Probab. Statist.42 (2006) 171–185]. We extend significantly the results in [Z. Wahrsch. Verw. Gebiete36 (1976) 195–212, Math. Scand.39 (1977) 327–342, J. Funct. Anal.250 (2007) 374–399] and include some key examples of the branching process literature. As far as the proofs are concerned, we appeal to modern techniques concerning martingales and “spine” decompositions or “immortal particle pictures.”},
author = {Engländer, János, Harris, Simon C., Kyprianou, Andreas E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {law of large numbers; spine decomposition; spatial branching processes; branching diffusions; measure-valued processes; h-transform; criticality; product-criticality; generalized principal eigenvalue; -transform},
language = {eng},
number = {1},
pages = {279-298},
publisher = {Gauthier-Villars},
title = {Strong law of large numbers for branching diffusions},
url = {http://eudml.org/doc/240655},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Engländer, János
AU - Harris, Simon C.
AU - Kyprianou, Andreas E.
TI - Strong law of large numbers for branching diffusions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 279
EP - 298
AB - Let X be the branching particle diffusion corresponding to the operator Lu+β(u2−u) on D⊆ℝd (where β≥0 and β≢0). Let λc denote the generalized principal eigenvalue for the operator L+β on D and assume that it is finite. When λc&gt;0 and L+β−λc satisfies certain spectral theoretical conditions, we prove that the random measure exp{−λct}Xt converges almost surely in the vague topology as t tends to infinity. This result is motivated by a cluster of articles due to Asmussen and Hering dating from the mid-seventies as well as the more recent work concerning analogous results for superdiffusions of [Ann. Probab.30 (2002) 683–722, Ann. Inst. H. Poincaré Probab. Statist.42 (2006) 171–185]. We extend significantly the results in [Z. Wahrsch. Verw. Gebiete36 (1976) 195–212, Math. Scand.39 (1977) 327–342, J. Funct. Anal.250 (2007) 374–399] and include some key examples of the branching process literature. As far as the proofs are concerned, we appeal to modern techniques concerning martingales and “spine” decompositions or “immortal particle pictures.”
LA - eng
KW - law of large numbers; spine decomposition; spatial branching processes; branching diffusions; measure-valued processes; h-transform; criticality; product-criticality; generalized principal eigenvalue; -transform
UR - http://eudml.org/doc/240655
ER -

References

top
  1. [1] S. Asmussen and H. Hering. Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z. Wahrsch. Verw. Gebiete 36 (1976) 195–212. Zbl0325.60081MR420889
  2. [2] S. Asmussen and H. Hering. Strong limit theorems for supercritical immigration-branching processes. Math. Scand. 39 (1977) 327–342. Zbl0348.60117MR438498
  3. [3] K. Athreya. Change of measures for Markov chains and the LlogL theorem for branching processes. Bernoulli 6 (2000) 323–338. Zbl0969.60076MR1748724
  4. [4] J. Biggins. Uniform convergence in the branching random walk. Ann. Probab. 20 (1992) 137–151. Zbl0748.60080MR1143415
  5. [5] J. D. Biggins and A. E. Kyprianou. Measure change in multitype branching. Adv. in Appl. Probab. 36 (2004) 544–581. Zbl1056.60082MR2058149
  6. [6] A. Champneys, S. C. Harris, J. Toland, J. Warren and D. Williams. Algebra, analysis and probability for a coupled system of reaction-diffusion equations. Philos. Trans. R. Soc. Lond. Ser. A 350 (1995) 69–112. Zbl0824.60070MR1325205
  7. [7] B. Chauvin and A. Rouault. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields 80 (1988) 299–314. Zbl0653.60077MR968823
  8. [8] Z.-Q. Chen and Y. Shiozawa. Limit theorems for branching Markov processes. J. Funct. Anal. 250 (2007) 374–399. Zbl1125.60087MR2352485
  9. [9] Z.-Q. Chen, Y. Ren and H. Wang. An almost sure scaling limit theorem for Dawson–Watanabe superprocesses J. Funct. Anal. 254 (2008) 1988–2019. Zbl1138.60054MR2397881
  10. [10] D. A. Dawson. Measure-valued Markov processes. In Ecole d’Eté Probabilités de Saint Flour XXI 1–260. Lecture Notes in Math. 1541. Springer, Berlin, 1993. Zbl0799.60080MR1242575
  11. [11] E. B. Dynkin. An Introduction to Branching Measure-Valued Processes. CRM Monograph Series 6. Amer. Math. Soc., Providence, RI, 1994. Zbl0824.60001MR1280712
  12. [12] J. Engländer. Branching diffusions, superdiffusions and random media. Probab. Surv. 4 (2007) 303–364. Zbl1189.60143MR2368953
  13. [13] J. Engländer. Law of large numbers for superdiffusions: The non-ergodic case. Ann. Inst. H. Poincare Probab. Statist. 45 (2009) 1–6. Zbl1172.60022MR2500226
  14. [14] J. Engländer and A. Kyprianou. Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2003) 78–99. Zbl1056.60083MR2040776
  15. [15] J. Engländer and R. Pinsky. On the construction and support properties of measure-valued diffusions on D⊆Rd with spatially dependent branching. Ann. Probab. 27 (1999) 684–730. Zbl0979.60078MR1698955
  16. [16] J. Engländer and D. Turaev. A scaling limit theorem for a class of superdiffusions. Ann. Probab. 30 (2002) 683–722. Zbl1014.60080MR1905855
  17. [17] J. Engländer and A. Winter. Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincare Probab. Statist. 42 (2006) 171–185. Zbl1093.60058MR2199796
  18. [18] A. Etheridge. An Introduction to Superprocesses. University Lecture Series 20. Amer. Math. Soc., Providence, RI, 2000. Zbl0971.60053MR1779100
  19. [19] S. N. Evans. Two representations of a superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 959–971. Zbl0784.60052MR1249698
  20. [20] Y. Git, J. W. Harris and S. C. Harris. Exponential growth rates in a typed branching diffusion. Ann. Appl. Probab. 17 (2007) 609–653. Zbl1131.60077MR2308337
  21. [21] R. Hardy and S. C. Harris. A conceptual approach to a path result for branching Brownian motion. Stochastic Process Appl. 116 (2006) 1992–2013. Zbl1114.60065MR2307069
  22. [22] R. Hardy and S. C. Harris. A spine approach to branching diffusions with applications to Lp-convergence of martingales. In Séminaire de Probabilités XLII. C. Donati-Martin, M. Émery, A. Rouault and C. Stricker (Eds). 1979, 2009. Zbl1193.60100MR2599214
  23. [23] S. C. Harris. Convergence of a “Gibbs–Boltzman” random measure for a typed branching diffusion. In Séminaire de Probabilités XXXIV 239–256. Lecture Notes in Math. 1729. Springer, Berlin, 2000. Zbl0985.60053MR1768067
  24. [24] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften 288. Springer, Berlin, 2003. Zbl1018.60002MR1943877
  25. [25] O. Kallenberg. Stability of critical cluster fields. Math. Nachr. 77 (1977) 7–43. Zbl0361.60058MR443078
  26. [26] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of L log L criteria for mean behaviour of branching processes. Ann. Probab. 23 (1995) 1125–1138. Zbl0840.60077MR1349164
  27. [27] R. G. Pinsky. Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, Cambridge, 1995. Zbl0858.31001MR1326606
  28. [28] R. G. Pinsky. Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24 (1996) 237–267. Zbl0854.60087MR1387634
  29. [29] S. Watanabe. A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8 (1968) 141–167. Zbl0159.46201MR237008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.