L p pinching and compactness theorems for compact riemannian manifolds

Deane Yang

Séminaire de théorie spectrale et géométrie (1987-1988)

  • Volume: 6, page 81-89
  • ISSN: 1624-5458

How to cite

top

Yang, Deane. "$L^p$ pinching and compactness theorems for compact riemannian manifolds." Séminaire de théorie spectrale et géométrie 6 (1987-1988): 81-89. <http://eudml.org/doc/114283>.

@article{Yang1987-1988,
author = {Yang, Deane},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {curvature bounds; heat equation; smoothing of a Riemannian metric; pinching theorems; compactness theorems},
language = {eng},
pages = {81-89},
publisher = {Institut Fourier},
title = {$L^p$ pinching and compactness theorems for compact riemannian manifolds},
url = {http://eudml.org/doc/114283},
volume = {6},
year = {1987-1988},
}

TY - JOUR
AU - Yang, Deane
TI - $L^p$ pinching and compactness theorems for compact riemannian manifolds
JO - Séminaire de théorie spectrale et géométrie
PY - 1987-1988
PB - Institut Fourier
VL - 6
SP - 81
EP - 89
LA - eng
KW - curvature bounds; heat equation; smoothing of a Riemannian metric; pinching theorems; compactness theorems
UR - http://eudml.org/doc/114283
ER -

References

top
  1. [BK] BUSER P., KARCHER H. - Gromov's almost flat manifolds, Astérisque 81, 1981. Zbl0459.53031MR619537
  2. [CE] CHEEGER J. EBIN D.G. - Comparison Theorems in Riemannian Geometry, New York : American-Elsevier, 1975. Zbl0309.53035MR458335
  3. [C] CROKE C. - Some isoperimetric inequalities and eigenvalue estimates, Ann. scient. Éc. Norm. Sup., 13 ( 1980), 419-435. Zbl0465.53032MR608287
  4. [G1] GAO L.Z. - Einstein manifolds I, preprint. 
  5. [G2] GAO L.Z. - Ln/2 curvature pinching, preprint 
  6. [G3] GAO L.Z. - Convergence of Riemannian manifolds, Ricci pinching, and Ln/2-curvature pinching, preprint. Zbl0752.53022
  7. [GW] GREENE R.E., WU H. - Lipschitz convergence of Riemannian manifolds, Pacific J. Math. Zbl0646.53038MR917868
  8. [GLP] GROMOV M., LA FONTAINE J., PANSU P. - Structures métriques pour les variétés riemanniennes, Paris, Cedic, 1981. Zbl0509.53034MR682063
  9. [H] HAMILTON R.S. - Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 ( 1982), 255-306. Zbl0504.53034MR664497
  10. [M] MIN - Oo. - Almost Einstein manifolds of negative Ricci curvature, preprint Zbl0725.53050MR1072914
  11. [P1] PETERS S. - Cheeger1's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. für die reine und angewandte Mathematik, 349 ( 1984), 77-82. Zbl0524.53025MR743966
  12. [P2] PETERS S. - Convergence of Riemannian manifolds, Compositio Math. Zbl0618.53036MR892147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.