pinching and compactness theorems for compact riemannian manifolds
Séminaire de théorie spectrale et géométrie (1987-1988)
- Volume: 6, page 81-89
- ISSN: 1624-5458
Access Full Article
topHow to cite
topYang, Deane. "$L^p$ pinching and compactness theorems for compact riemannian manifolds." Séminaire de théorie spectrale et géométrie 6 (1987-1988): 81-89. <http://eudml.org/doc/114283>.
@article{Yang1987-1988,
author = {Yang, Deane},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {curvature bounds; heat equation; smoothing of a Riemannian metric; pinching theorems; compactness theorems},
language = {eng},
pages = {81-89},
publisher = {Institut Fourier},
title = {$L^p$ pinching and compactness theorems for compact riemannian manifolds},
url = {http://eudml.org/doc/114283},
volume = {6},
year = {1987-1988},
}
TY - JOUR
AU - Yang, Deane
TI - $L^p$ pinching and compactness theorems for compact riemannian manifolds
JO - Séminaire de théorie spectrale et géométrie
PY - 1987-1988
PB - Institut Fourier
VL - 6
SP - 81
EP - 89
LA - eng
KW - curvature bounds; heat equation; smoothing of a Riemannian metric; pinching theorems; compactness theorems
UR - http://eudml.org/doc/114283
ER -
References
top- [BK] BUSER P., KARCHER H. - Gromov's almost flat manifolds, Astérisque 81, 1981. Zbl0459.53031MR619537
- [CE] CHEEGER J. EBIN D.G. - Comparison Theorems in Riemannian Geometry, New York : American-Elsevier, 1975. Zbl0309.53035MR458335
- [C] CROKE C. - Some isoperimetric inequalities and eigenvalue estimates, Ann. scient. Éc. Norm. Sup., 13 ( 1980), 419-435. Zbl0465.53032MR608287
- [G1] GAO L.Z. - Einstein manifolds I, preprint.
- [G2] GAO L.Z. - Ln/2 curvature pinching, preprint
- [G3] GAO L.Z. - Convergence of Riemannian manifolds, Ricci pinching, and Ln/2-curvature pinching, preprint. Zbl0752.53022
- [GW] GREENE R.E., WU H. - Lipschitz convergence of Riemannian manifolds, Pacific J. Math. Zbl0646.53038MR917868
- [GLP] GROMOV M., LA FONTAINE J., PANSU P. - Structures métriques pour les variétés riemanniennes, Paris, Cedic, 1981. Zbl0509.53034MR682063
- [H] HAMILTON R.S. - Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 ( 1982), 255-306. Zbl0504.53034MR664497
- [M] MIN - Oo. - Almost Einstein manifolds of negative Ricci curvature, preprint Zbl0725.53050MR1072914
- [P1] PETERS S. - Cheeger1's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. für die reine und angewandte Mathematik, 349 ( 1984), 77-82. Zbl0524.53025MR743966
- [P2] PETERS S. - Convergence of Riemannian manifolds, Compositio Math. Zbl0618.53036MR892147
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.