Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes
Bulletin de la Société Mathématique de France (1998)
- Volume: 126, Issue: 1, page 79-105
- ISSN: 0037-9484
Access Full Article
topHow to cite
topReferences
top- [1] BIQUARD (O.). — Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann., t. 304, 1996, p. 253-276. Zbl0843.53027MR97c:53066
- [2] BIQUARD (O.). — Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse), Ann. Scient. Éc. Norm. Sup., t. 30, 1997, p. 41-96. Zbl0876.53043MR98e:32054
- [3] BIQUARD (O.), GAUDUCHON (P.). — Hyperkähler metrics on cotangent bundles of hermitian symmetric spaces, in Geometry and Physics, J. Andersen, J. Dupont, H. Pedersen, A. Swann éd., Lect. Notes Pure Appl. Math. 184, Marcel Dekker, 1996, p. 287-298. Zbl0879.53051MR97k:53041
- [4] BIQUARD (O.), GAUDUCHON (P.). — La métrique hyperkählérienne des orbites coadjointes de type symétrique d'un groupe de Lie semi-simple complexe, C. R. Acad. Sci. Paris, t. 323, 1996, p. 1259-1264. Zbl0866.58007MR97k:53040
- [5] BRYLINSKI (R.), KOSTANT (B.). — Transverse polarizations of minimal nilpotent orbits and geometric quantization, Preprint, 1996.
- [6] BURNS (D.). — Some examples of the twistor construction, in Contributions to several complex variables, Hon. W. Stoll, A. Howard, P. M. Wong éd., Aspects Math. E9, Vieweg, 1986, p. 51-67. Zbl0596.53057MR88d:32039
- [7] DONALDSON (S.). — Nahm's equations and the classification of monopoles, Commun. Math. Phys., t. 96, 1984, p. 387-407. Zbl0603.58042MR86c:58039
- [8] HITCHIN (N.J.). — Hyper-Kähler manifolds, Séminaire Bourbaki, exp. n° 748, Astérisque, t. 206, 1992, p. 137-166. Zbl0979.53051MR94f:53087
- [9] HITCHIN (N.J.). — Integrable systems in Riemannian geometry, Preprint, 1996. Zbl0939.37039
- [10] HITCHIN (N.J.), KARLHEDE (A.), LINDSTRØM (U.), ROČEK (M.). — Hyperkähler metrics and supersymmetry, Commun. Math. Phys., t. 108, 1987, p. 535-589. Zbl0612.53043
- [11] JOYCE (D.). — Hypercomplex algebraic geometry, Preprint. Zbl0924.14002
- [12] KOBAK (P.Z.), SWANN (A.). — Classical nilpotent orbits as hyperkähler quotients, Int. J. Math., t. 7, 1996, p. 93-210. Zbl0858.53042MR97f:53078
- [13] KOVALEV (A.G.). — Nahm's equations and complex adjoint orbits, Q.J. Math., Oxf. II. Ser., t. 47, 1996, p. 41-58. Zbl0852.53033MR97c:53070
- [14] KRONHEIMER (P.B.). — A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group, J. Lond. Math. Soc., t. 42, 1990, p. 193-208. Zbl0721.22006MR92b:53031
- [15] KRONHEIMER (P.B.). — Instantons and the geometry of the nilpotent variety, J. Differ. Geom., t. 32, 1990, p. 473-490. Zbl0725.58007MR91m:58021
- [16] NAKAJIMA (H.). — Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., t. 76, 1994, p. 365-416. Zbl0826.17026MR95i:53051
- [17] SANTA-CRUZ (S.). — Twistor geometry for hyperkähler metrics on complex adjoint orbits, Ann. Global Anal. Geom., t. 15, 1997, p. 361-377. Zbl0924.53034
- [18] SIMPSON (C.). — The Hodge filtration on nonabelian cohomology, in Algebraic geometry, Santa Cruz 1995, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, t. 62, 1997, p. 217-281. Zbl0914.14003MR99g:14028