Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes

Olivier Biquard

Bulletin de la Société Mathématique de France (1998)

  • Volume: 126, Issue: 1, page 79-105
  • ISSN: 0037-9484

How to cite

top

Biquard, Olivier. "Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes." Bulletin de la Société Mathématique de France 126.1 (1998): 79-105. <http://eudml.org/doc/87781>.

@article{Biquard1998,
author = {Biquard, Olivier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Nahm equation; twistors; twistor inverse; hyper-pseudo-Kählerian metrics},
language = {fre},
number = {1},
pages = {79-105},
publisher = {Société mathématique de France},
title = {Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes},
url = {http://eudml.org/doc/87781},
volume = {126},
year = {1998},
}

TY - JOUR
AU - Biquard, Olivier
TI - Twisteurs des orbites coadjointes et métriques hyper-pseudokählériennes
JO - Bulletin de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 126
IS - 1
SP - 79
EP - 105
LA - fre
KW - Nahm equation; twistors; twistor inverse; hyper-pseudo-Kählerian metrics
UR - http://eudml.org/doc/87781
ER -

References

top
  1. [1] BIQUARD (O.). — Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann., t. 304, 1996, p. 253-276. Zbl0843.53027MR97c:53066
  2. [2] BIQUARD (O.). — Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse), Ann. Scient. Éc. Norm. Sup., t. 30, 1997, p. 41-96. Zbl0876.53043MR98e:32054
  3. [3] BIQUARD (O.), GAUDUCHON (P.). — Hyperkähler metrics on cotangent bundles of hermitian symmetric spaces, in Geometry and Physics, J. Andersen, J. Dupont, H. Pedersen, A. Swann éd., Lect. Notes Pure Appl. Math. 184, Marcel Dekker, 1996, p. 287-298. Zbl0879.53051MR97k:53041
  4. [4] BIQUARD (O.), GAUDUCHON (P.). — La métrique hyperkählérienne des orbites coadjointes de type symétrique d'un groupe de Lie semi-simple complexe, C. R. Acad. Sci. Paris, t. 323, 1996, p. 1259-1264. Zbl0866.58007MR97k:53040
  5. [5] BRYLINSKI (R.), KOSTANT (B.). — Transverse polarizations of minimal nilpotent orbits and geometric quantization, Preprint, 1996. 
  6. [6] BURNS (D.). — Some examples of the twistor construction, in Contributions to several complex variables, Hon. W. Stoll, A. Howard, P. M. Wong éd., Aspects Math. E9, Vieweg, 1986, p. 51-67. Zbl0596.53057MR88d:32039
  7. [7] DONALDSON (S.). — Nahm's equations and the classification of monopoles, Commun. Math. Phys., t. 96, 1984, p. 387-407. Zbl0603.58042MR86c:58039
  8. [8] HITCHIN (N.J.). — Hyper-Kähler manifolds, Séminaire Bourbaki, exp. n° 748, Astérisque, t. 206, 1992, p. 137-166. Zbl0979.53051MR94f:53087
  9. [9] HITCHIN (N.J.). — Integrable systems in Riemannian geometry, Preprint, 1996. Zbl0939.37039
  10. [10] HITCHIN (N.J.), KARLHEDE (A.), LINDSTRØM (U.), ROČEK (M.). — Hyperkähler metrics and supersymmetry, Commun. Math. Phys., t. 108, 1987, p. 535-589. Zbl0612.53043
  11. [11] JOYCE (D.). — Hypercomplex algebraic geometry, Preprint. Zbl0924.14002
  12. [12] KOBAK (P.Z.), SWANN (A.). — Classical nilpotent orbits as hyperkähler quotients, Int. J. Math., t. 7, 1996, p. 93-210. Zbl0858.53042MR97f:53078
  13. [13] KOVALEV (A.G.). — Nahm's equations and complex adjoint orbits, Q.J. Math., Oxf. II. Ser., t. 47, 1996, p. 41-58. Zbl0852.53033MR97c:53070
  14. [14] KRONHEIMER (P.B.). — A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group, J. Lond. Math. Soc., t. 42, 1990, p. 193-208. Zbl0721.22006MR92b:53031
  15. [15] KRONHEIMER (P.B.). — Instantons and the geometry of the nilpotent variety, J. Differ. Geom., t. 32, 1990, p. 473-490. Zbl0725.58007MR91m:58021
  16. [16] NAKAJIMA (H.). — Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., t. 76, 1994, p. 365-416. Zbl0826.17026MR95i:53051
  17. [17] SANTA-CRUZ (S.). — Twistor geometry for hyperkähler metrics on complex adjoint orbits, Ann. Global Anal. Geom., t. 15, 1997, p. 361-377. Zbl0924.53034
  18. [18] SIMPSON (C.). — The Hodge filtration on nonabelian cohomology, in Algebraic geometry, Santa Cruz 1995, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, t. 62, 1997, p. 217-281. Zbl0914.14003MR99g:14028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.