Harnack inequalities on graphs
Séminaire de théorie spectrale et géométrie (1997-1998)
- Volume: 16, page 217-228
- ISSN: 1624-5458
Access Full Article
topHow to cite
topDelmotte, Thierry. "Harnack inequalities on graphs." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 217-228. <http://eudml.org/doc/114422>.
@article{Delmotte1997-1998,
author = {Delmotte, Thierry},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {graphs; Markov kernel satisfying Gaussian estimates; minimal growth of harmonic functions},
language = {eng},
pages = {217-228},
publisher = {Institut Fourier},
title = {Harnack inequalities on graphs},
url = {http://eudml.org/doc/114422},
volume = {16},
year = {1997-1998},
}
TY - JOUR
AU - Delmotte, Thierry
TI - Harnack inequalities on graphs
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 217
EP - 228
LA - eng
KW - graphs; Markov kernel satisfying Gaussian estimates; minimal growth of harmonic functions
UR - http://eudml.org/doc/114422
ER -
References
top- [1] CHENG S., YAU S.T., Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 ( 1975), 333-354. Zbl0312.53031MR385749
- [2] CHUNG F.R.K., YAU S.T.,. A Harnack inequality for homogeneous graphs and subgraphs, Comm. in Analysis and Geom. 2 ( 1994), 628-639. Zbl0834.05038MR1336898
- [3] COLDING T.H., MINICOZZI II W. P., Generalized Liouville properties of manifolds, Math. Res. Lett., 3, 6 ( 1996), 723-729. Zbl0884.58032MR1426530
- [4] COLDING T.H., MINICOZZI II W.P., Harmonic fonctions on manifolds, Preprint. Zbl0928.53030
- [5] COLDING T.H., MINICOZZI II W.P., Weyl type bounds for harmonic function, Preprint. Zbl0919.31004
- [6] COULHON T., GRIGOR'YAN A., Random walks on graphs with regular volume growth, GAFA, Geom. funct. anal., 8 ( 1998), 656-701. Zbl0918.60053MR1633979
- [7] DAVIES E.B.., Large deviations for heat kernels on graphs, J. London Math. Soc. (2), 47 ( 1993), 65-72. Zbl0799.58086MR1200978
- [8] DE GIORGI E., Sulla differenziabilita el'analiticita delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Fis. Mat. 3,3 ( 1957), 25-43. Zbl0084.31901MR93649
- [9] DELMOTTE T., Inégalité de Harnack elliptique sur les graphes, Colloquium Mathematicum 72, 1 ( 1997), 19-37. Zbl0871.31008MR1425544
- [10] DELMOTTE T., Estimations pour les chaînes de Markov réversibles, C.R. Acad. Sci. Paris 324, I ( 1997), 1053-1058. Zbl0872.62079MR1451250
- [11] DELMOTTE T., Parabolic Harnack inequalities and estimates of Markov chains on graphs, To appear in Rev. Mat. Iberoamericana. Zbl0922.60060MR1681641
- [12] GRIGOR'YAN A., The heat equation on noncompact Riemannian manifolds, Math. USSR-Sb. 72 ( 1992), 47-77. Zbl0776.58035MR1098839
- [13] HEBISCH W., SALOFF-COSTE L., Gaussian estimates for Markov chains and random walks on groups; Ann. Probab., 21 (2) ( 1993), 673-709. Zbl0776.60086MR1217561
- [14] HOLOPAINEN I., SOARDI P.M., A strong Liouville theorem for p-harmonic fonctions on graphs, Ann. Acad. Sci. Fennicae Math., 22 ( 1997), 205-226. Zbl0874.31008MR1430400
- [15] LI P., YAU S.T., On the parabolic kernel of the Schrödinger operator, Acta Math., 156 ( 1986), 153-201. Zbl0611.58045MR834612
- [16] LI P., Harmonic sections of polynomial growth, Math. Res. Lett. 4, 1 ( 1997), 35-44. Zbl0880.53039MR1432808
- [17] MOSER J., On Harnacks Theorem for Elliptic Differential Equations, Comm. Pure Appl. Math. 14 ( 1961), 577-591. Zbl0111.09302MR159138
- [18] MOSER J., A Harnack Inequality for Parabolic Differential Equations, Comm. Pure Appl. Math. 1 ( 1964), 101-134. Correction in 20 ( 1967), 231-236. Zbl0149.07001MR159139
- [19] MOSER J., On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 ( 1971), 727-740. Zbl0227.35016MR288405
- [20] NASH J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 1958, 931-954. Zbl0096.06902MR100158
- [21] PANG M.M.H., Heat kernels of graphs, J. London Math. Soc. (2), 47 ( 1993), 50-64. Zbl0799.58085MR1200977
- [22] RIGOLI M., SALVATORI M., VIGNATI M., A global Harnack inequality on graphs and some related consequences, Preprint. Zbl0888.31003
- [23] SALOFF-COSTE L., A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 ( 1992), 27-38. Zbl0769.58054MR1150597
- [24] SALOFF-COSTE L., Parabolic Harnack inequality for divergence form second order differential operators, Potential analysis 4,4 ( 1995), 429-467. Zbl0840.31006MR1354894
- [25] STROOCK D.W., ZHENG W., Markov chain approximations to symmetric diffusions, Ann. I.H.P., 33, 5 ( 1997), 619-649. Zbl0885.60065MR1473568
- [26] YAU S.T., Nonlinear Analysis in Geometry, L'enseignement Mathématique, Série des Conférences de l'Union Mathématique Internationale 8, SRO-KUNDIG, Genève, 1986. Zbl0631.53003MR865650
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.