Harnack inequalities on graphs

Thierry Delmotte

Séminaire de théorie spectrale et géométrie (1997-1998)

  • Volume: 16, page 217-228
  • ISSN: 1624-5458

How to cite

top

Delmotte, Thierry. "Harnack inequalities on graphs." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 217-228. <http://eudml.org/doc/114422>.

@article{Delmotte1997-1998,
author = {Delmotte, Thierry},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {graphs; Markov kernel satisfying Gaussian estimates; minimal growth of harmonic functions},
language = {eng},
pages = {217-228},
publisher = {Institut Fourier},
title = {Harnack inequalities on graphs},
url = {http://eudml.org/doc/114422},
volume = {16},
year = {1997-1998},
}

TY - JOUR
AU - Delmotte, Thierry
TI - Harnack inequalities on graphs
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 217
EP - 228
LA - eng
KW - graphs; Markov kernel satisfying Gaussian estimates; minimal growth of harmonic functions
UR - http://eudml.org/doc/114422
ER -

References

top
  1. [1] CHENG S., YAU S.T., Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., 28 ( 1975), 333-354. Zbl0312.53031MR385749
  2. [2] CHUNG F.R.K., YAU S.T.,. A Harnack inequality for homogeneous graphs and subgraphs, Comm. in Analysis and Geom. 2 ( 1994), 628-639. Zbl0834.05038MR1336898
  3. [3] COLDING T.H., MINICOZZI II W. P., Generalized Liouville properties of manifolds, Math. Res. Lett., 3, 6 ( 1996), 723-729. Zbl0884.58032MR1426530
  4. [4] COLDING T.H., MINICOZZI II W.P., Harmonic fonctions on manifolds, Preprint. Zbl0928.53030
  5. [5] COLDING T.H., MINICOZZI II W.P., Weyl type bounds for harmonic function, Preprint. Zbl0919.31004
  6. [6] COULHON T., GRIGOR'YAN A., Random walks on graphs with regular volume growth, GAFA, Geom. funct. anal., 8 ( 1998), 656-701. Zbl0918.60053MR1633979
  7. [7] DAVIES E.B.., Large deviations for heat kernels on graphs, J. London Math. Soc. (2), 47 ( 1993), 65-72. Zbl0799.58086MR1200978
  8. [8] DE GIORGI E., Sulla differenziabilita el'analiticita delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Fis. Mat. 3,3 ( 1957), 25-43. Zbl0084.31901MR93649
  9. [9] DELMOTTE T., Inégalité de Harnack elliptique sur les graphes, Colloquium Mathematicum 72, 1 ( 1997), 19-37. Zbl0871.31008MR1425544
  10. [10] DELMOTTE T., Estimations pour les chaînes de Markov réversibles, C.R. Acad. Sci. Paris 324, I ( 1997), 1053-1058. Zbl0872.62079MR1451250
  11. [11] DELMOTTE T., Parabolic Harnack inequalities and estimates of Markov chains on graphs, To appear in Rev. Mat. Iberoamericana. Zbl0922.60060MR1681641
  12. [12] GRIGOR'YAN A., The heat equation on noncompact Riemannian manifolds, Math. USSR-Sb. 72 ( 1992), 47-77. Zbl0776.58035MR1098839
  13. [13] HEBISCH W., SALOFF-COSTE L., Gaussian estimates for Markov chains and random walks on groups; Ann. Probab., 21 (2) ( 1993), 673-709. Zbl0776.60086MR1217561
  14. [14] HOLOPAINEN I., SOARDI P.M., A strong Liouville theorem for p-harmonic fonctions on graphs, Ann. Acad. Sci. Fennicae Math., 22 ( 1997), 205-226. Zbl0874.31008MR1430400
  15. [15] LI P., YAU S.T., On the parabolic kernel of the Schrödinger operator, Acta Math., 156 ( 1986), 153-201. Zbl0611.58045MR834612
  16. [16] LI P., Harmonic sections of polynomial growth, Math. Res. Lett. 4, 1 ( 1997), 35-44. Zbl0880.53039MR1432808
  17. [17] MOSER J., On Harnacks Theorem for Elliptic Differential Equations, Comm. Pure Appl. Math. 14 ( 1961), 577-591. Zbl0111.09302MR159138
  18. [18] MOSER J., A Harnack Inequality for Parabolic Differential Equations, Comm. Pure Appl. Math. 1 ( 1964), 101-134. Correction in 20 ( 1967), 231-236. Zbl0149.07001MR159139
  19. [19] MOSER J., On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 ( 1971), 727-740. Zbl0227.35016MR288405
  20. [20] NASH J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math., 80 1958, 931-954. Zbl0096.06902MR100158
  21. [21] PANG M.M.H., Heat kernels of graphs, J. London Math. Soc. (2), 47 ( 1993), 50-64. Zbl0799.58085MR1200977
  22. [22] RIGOLI M., SALVATORI M., VIGNATI M., A global Harnack inequality on graphs and some related consequences, Preprint. Zbl0888.31003
  23. [23] SALOFF-COSTE L., A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 2 ( 1992), 27-38. Zbl0769.58054MR1150597
  24. [24] SALOFF-COSTE L., Parabolic Harnack inequality for divergence form second order differential operators, Potential analysis 4,4 ( 1995), 429-467. Zbl0840.31006MR1354894
  25. [25] STROOCK D.W., ZHENG W., Markov chain approximations to symmetric diffusions, Ann. I.H.P., 33, 5 ( 1997), 619-649. Zbl0885.60065MR1473568
  26. [26] YAU S.T., Nonlinear Analysis in Geometry, L'enseignement Mathématique, Série des Conférences de l'Union Mathématique Internationale 8, SRO-KUNDIG, Genève, 1986. Zbl0631.53003MR865650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.