Markov chain approximations to symmetric diffusions

Daniel W. Stroock; Weian Zheng

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 5, page 619-649
  • ISSN: 0246-0203

How to cite

top

Stroock, Daniel W., and Zheng, Weian. "Markov chain approximations to symmetric diffusions." Annales de l'I.H.P. Probabilités et statistiques 33.5 (1997): 619-649. <http://eudml.org/doc/77584>.

@article{Stroock1997,
author = {Stroock, Daniel W., Zheng, Weian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {symmetric diffusion; Dirichlet form; De Giorgi-Moser-Nash theory; divergence form operator; Markov chain},
language = {eng},
number = {5},
pages = {619-649},
publisher = {Gauthier-Villars},
title = {Markov chain approximations to symmetric diffusions},
url = {http://eudml.org/doc/77584},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Stroock, Daniel W.
AU - Zheng, Weian
TI - Markov chain approximations to symmetric diffusions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 5
SP - 619
EP - 649
LA - eng
KW - symmetric diffusion; Dirichlet form; De Giorgi-Moser-Nash theory; divergence form operator; Markov chain
UR - http://eudml.org/doc/77584
ER -

References

top
  1. [1] E. Carlen, S. Kusuoka and D. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré, Vol. 35, Sup. au #2, 1987, pp. 245-287. Zbl0634.60066MR898496
  2. [2] S. Ethier and T. Kurtz, Markov Processes, J. Wiley & Sons, 1986. Zbl0592.60049
  3. [3] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter Series in Math., W. De Gruyter, 1994. Zbl0838.31001MR1303354
  4. [4] E. Fabes and D. Stroock, The De Giorgi-Moser Harnack principle via the old ideas of Nash, Arch. Ratl. Mech. & Anal., Vol. 96, #4, 1987, pp. 327-338. Zbl0652.35052
  5. [5] I.I. Gihman and A. Skorohod, The Theory of Stochastic Processes II, Springer-Verlag, Grund. #218, 1975. Zbl0305.60027MR375463
  6. [6] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic Press, Pure & Appl. Math., #88, 1980. Zbl0457.35001
  7. [7] W. Littman, G. Stampacchia and H. Weinberger, Regular Points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup Pisa, #17, 1963, pp. 43-77. Zbl0116.30302MR161019
  8. [8] Z.-M. Ma and M. Röckner, Dirichlet Forms, Springer-Verlag, Universitext Series, 1992. MR1214375
  9. [9] D. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, Séminaire de Probabililité XXII(J. Azema & M. Yor, ed.), Springer-Verlag LNMS #1321, 1988, pp. 316-348. Zbl0651.47031
  10. [10] D. Stroock, Probability Theory, An Analytic View, Cambridge Univ. Press, 1993. Zbl0925.60004MR1267569
  11. [11] D. Stroock and S.R.S. Varadhan, Multidimensional Diffusion Theory, Springer-Verlag, Grundlehren233, 1979. Zbl0426.60069MR532498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.