Inégalité de Harnack elliptique sur les graphes
Colloquium Mathematicae (1997)
- Volume: 72, Issue: 1, page 19-37
- ISSN: 0010-1354
Access Full Article
topHow to cite
topDelmotte, T.. "Inégalité de Harnack elliptique sur les graphes." Colloquium Mathematicae 72.1 (1997): 19-37. <http://eudml.org/doc/210453>.
@article{Delmotte1997,
author = {Delmotte, T.},
journal = {Colloquium Mathematicae},
keywords = {Harnack inequality; Moser's iteration; strongly local Dirichlet forms},
language = {fre},
number = {1},
pages = {19-37},
title = {Inégalité de Harnack elliptique sur les graphes},
url = {http://eudml.org/doc/210453},
volume = {72},
year = {1997},
}
TY - JOUR
AU - Delmotte, T.
TI - Inégalité de Harnack elliptique sur les graphes
JO - Colloquium Mathematicae
PY - 1997
VL - 72
IS - 1
SP - 19
EP - 37
LA - fre
KW - Harnack inequality; Moser's iteration; strongly local Dirichlet forms
UR - http://eudml.org/doc/210453
ER -
References
top- [BCLSC] D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J., à paraître.
- [B] N. Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A 286 (1978), 139-142. Zbl0368.46037
- [CKS] E. Carlen, S. Kusuoka and D. Stroock, Upper bounds for symmetric Mar- kov functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 245-287. Zbl0634.60066
- [CSC1] T. Coulhon et L. Saloff-Coste, Puissances d'un opérateur régularisant, ibid. 26 (1990), 419-436. Zbl0709.47042
- [CSC2] T. Coulhon et L. Saloff-Coste, Isopérimétrie sur les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293-314.
- [CW] R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, 1971.
- [G] A. A. Grigor'yan, The heat equation on noncompact Riemannian manifolds, Math. USSR-Sb. 72 (1992), 47-77.
- [JN] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl0102.04302
- [L] G. F. Lawler, Estimates for differences and Harnack inequality for difference operators coming from random walks with symmetric, spatially inhomogeneous, increments, Proc. London Math. Soc. (3) 63 (1991), 552-568. Zbl0774.39004
- [Me] A. B. Merkov, Second-order elliptic equations on graphs, Math. USSR-Sb. 55 (1986), 493-509. Zbl0657.35044
- [Mo1] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. Zbl0111.09302
- [Mo2] J. Moser, A Harnack inequality for parabolic differential equations, ibid. 17 (1964), 101-134.
- [SC1] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Res. Notices 1992, no. 2, 27-38. Zbl0769.58054
- [SC2] L. Saloff-Coste, Parabolic Harnack inequality for divergence form second order differential operators, Potential Anal. 4 (1995), 429-467. Zbl0840.31006
- [V1] N. Varopoulos, Une généralisation du théorème de Hardy-Littlewood-Sobo- lev pour les espaces de Dirichlet, C. R. Acad. Sci. Paris Sér. I 299 (1984), 651-654. Zbl0566.31006
- [V2] N. Varopoulos, Fonctions harmoniques sur les groupes de Lie, ibid. 304 (1987), 519-521.
- [Z] X. Y. Zhou, Green function estimates and their applications to the intersections of symmetric random walks, Stochastic Process. Appl. 48 (1993), 31-60. Zbl0810.60064
Citations in EuDML Documents
top- Pascal Auscher, Thierry Coulhon, Gaussian lower bounds for random walks from elliptic regularity
- Antoine Gloria, Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations
- Sébastien Blachère, Harmonic functions on annuli of graphs
- Daniel Boivin, Tail estimates for homogenization theorems in random media
- Antoine Gloria, Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations
- Thierry Delmotte, Harnack inequalities on graphs
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.