Propriétés ergodiques du flot horocyclique d'une surface hyperbolique géométriquement finie

Barbara Schapira

Séminaire de théorie spectrale et géométrie (2002-2003)

  • Volume: 21, page 147-163
  • ISSN: 1624-5458

How to cite

top

Schapira, Barbara. "Propriétés ergodiques du flot horocyclique d'une surface hyperbolique géométriquement finie." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 147-163. <http://eudml.org/doc/114472>.

@article{Schapira2002-2003,
author = {Schapira, Barbara},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {hyperbolic surface; horocycle flow; ergodic measures; equidistribution; Hölder cocycles; quasi-invariant measures},
language = {fre},
pages = {147-163},
publisher = {Institut Fourier},
title = {Propriétés ergodiques du flot horocyclique d'une surface hyperbolique géométriquement finie},
url = {http://eudml.org/doc/114472},
volume = {21},
year = {2002-2003},
}

TY - JOUR
AU - Schapira, Barbara
TI - Propriétés ergodiques du flot horocyclique d'une surface hyperbolique géométriquement finie
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 147
EP - 163
LA - fre
KW - hyperbolic surface; horocycle flow; ergodic measures; equidistribution; Hölder cocycles; quasi-invariant measures
UR - http://eudml.org/doc/114472
ER -

References

top
  1. [Bl] BABILLOT, MartineOn the mixing propertyfor hyperbolic Systems ( 2002) Israël J. Math. 129, 61-76. Zbl1053.37001MR1910932
  2. [B2] BABILLOT, MartinePoints entiers et groupes discrets : de l'analyse aux systèmes dynamiques, Panoramas et synthèses 13, Paris, SMF ( 2002). 
  3. [Ba-L] BABILLOT, Martine ; LEDRAPPIER, FrançoisGeodesic paths and Horocycle Flow on Abelian Covers, Proc. International Colloquium on Lie groups and Ergodic theory, Tata Institute of Fundamental Research, Narosa Publishing house, New Delhi ( 1998), 1-32. Zbl0967.37020MR1699356
  4. [Be-M] BEKKA, M. Bachir; MAYER, MatthiasErgodic theory and topological dynamics of group actions on homogeneous spaces. London Mathematical Society Lecture Note Series 269 Cambridge University Press, Cambridge, 2000. Zbl0961.37001MR1781937
  5. [Bo-M] BOWEN, Rufus ; MARCUS, BrianUnique ergodicity for horocycle foliations. Israël J. Math. 26 ( 1977), no. 1,43-67. Zbl0346.58009MR451307
  6. [Bu] BURGER, MarcHorocycle flow on geometrically finite surfaces, Duke Math. J. 61, n.3, ( 1990) 779-803. Zbl0723.58041MR1084459
  7. [C] COUDÈNE, YvesGibbs measures on negatively curved manifolds. J. Dynam. Control Systems 9 no. 1 ( 2003), 89-101. Zbl1020.37006MR1956446
  8. [D] DAL'BO, FrançoiseTopologie du feuilletage fortement stable. Ann. Inst.Fourier (Grenoble) 50 ( 2000), no. 3, 981-993. Zbl0965.53054MR1779902
  9. [Da1] DANI, S. G.Invariant measures of horospherical flows on noncompact homogeneous spaces. Invent. Math. 47 ( 1978), no. 2, 101-138. Zbl0368.28021MR578655
  10. [Da2] DANI, S.G.On uniformly distributed orbits of certain horocycle flows, Ergodic Theory Dyn. Systems 2 ( 1982), 139-158. Zbl0504.22006MR693971
  11. [Da S] DANI, S.G. ; SMILLIE, JohnUniform distribution of horocycle orbits for Fuchsian groups. Duke, Math. J.-51 ( 1984), no. 1,185-194. Zbl0547.20042MR744294
  12. [F] FURSTENBERG, HarryThe unique ergodicity ofthe horocycle flow. ecent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972 ; in honor of Gustav Arnold Hedlund), pp. 95-115. Lecture Notes in Math., Vol. 318, Springer, Berlin, 1973. Zbl0256.58009MR393339
  13. [H] HEDLUND, Gustav ArnoldFuchsian groups and transitive horocycles, Duke Math. J. 2 ( 1936), 530-542. Zbl0015.10201MR1545946
  14. [K] KAIMANOVICH, Vadim A.Ergodic properties of the horocycle flow and classification of Fuchsian groups, J. Dynam. Control Systems 6, no. 1, 21-56 ( 2000). Zbl0988.37038MR1738739
  15. [L] LEDRAPPIER, FrançoisStructure au bord des variétés à courbure négative, Séminaire de théorie spectrale et géométrie, Grenoble ( 1994-95), 93-118. Zbl0931.53005MR1715960
  16. [P] PETERSEN, KarlErgodic Theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge ( 1983). Zbl0507.28010MR833286
  17. [R] RATNER, MarinaRaghunathan's conjectures for SL(2,ℝ). Israël J. Math. 80 ( 1992), no. 1-2, 1-31. Zbl0785.22013MR1248925
  18. [Ro] ROBLIN, ThomasErgodicité et unique ergodicité du feuilletage horosphérique, mélange du flot géodésique et équidistributions diverses dans les groupes discrets en courbure négative. ( 2001) Prépublication de l'institut de Recherche Mathématique de Rennes. 
  19. [S1] SCHAPIRA, BarbaraOn quasi-invariant transverse measuresfor the horospherical foliation ofa negatively curved manifold (2002) Aparaître dans Ergodic Theory and Dynamical Systems. Zbl1115.37028
  20. [S2] SCHAPIRA, BarbaraLemme de l'ombre et non divergence des horocycles d'une variété géométriquement finie (mai 2003) Prépublication du MAPMO. 
  21. [S3] SCHAPIRA, BarbaraÉquidistribution des horocycles d'une surface géométriquement finie (juillet 2003) Prépublication du MAPMO. 
  22. [S4] SCHAPIRA, BarbaraPropriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative, Thèse de l'Université d'Orléans ( 2003). 
  23. [Su1] SULLIVAN, DennisThe density at infinity of a discrete group of hyperbolic motions Publ. Math. I.H.E.S 50 ( 1979) 171-202. Zbl0439.30034MR556586
  24. [Su2] SULLIVAN, DennisEntropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., ( 1984) 259-277. Zbl0566.58022MR766265

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.