Topologie du feuilletage fortement stable

Françoise Dal'bo

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 981-993
  • ISSN: 0373-0956

Abstract

top
Let X be a Hadamard manifold with curvature - 1 and Γ be a non elementary isometry group acting freely properly discontinuously on X . We are interested in the topology of the leaves of the strong stable foliation on T 1 ( Γ X ) . We establish equivalences between the non arithmeticity of Γ (i.e. the group generated by the length spectrum of Γ X is dense in ), the existence of a dense leaf in the non wandering set Ω X of and the topological mixing of the geodesic flow on its non wandering set. Our proof uses the action of Γ on X ( ) and the relation between cross-ratio and length spectrum.In the case when Γ is not arithmetic, we prove that Γ is geometrically finite if and only if leaves in Ω X are dense or are associated to bounded parabolic fixed points (such leaves are closed).

How to cite

top

Dal'bo, Françoise. "Topologie du feuilletage fortement stable." Annales de l'institut Fourier 50.3 (2000): 981-993. <http://eudml.org/doc/75446>.

@article{Dalbo2000,
abstract = {Soient $X$ une variété de Hadamard de courbure $\le -1$ et $\Gamma $ un groupe d’isométries non élémentaire. Nous montrons qu’il y a équivalence entre la non-arithméticité du spectre des longueurs de $\Gamma \backslash X$, le mélange topologique du flot géodésique et l’existence d’une feuille dense pour le feuilletage fortement stable.},
author = {Dal'bo, Françoise},
journal = {Annales de l'institut Fourier},
keywords = {geodesic flow; foliation; discontinuous isometry group; homogeneous space},
language = {fre},
number = {3},
pages = {981-993},
publisher = {Association des Annales de l'Institut Fourier},
title = {Topologie du feuilletage fortement stable},
url = {http://eudml.org/doc/75446},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Dal'bo, Françoise
TI - Topologie du feuilletage fortement stable
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 981
EP - 993
AB - Soient $X$ une variété de Hadamard de courbure $\le -1$ et $\Gamma $ un groupe d’isométries non élémentaire. Nous montrons qu’il y a équivalence entre la non-arithméticité du spectre des longueurs de $\Gamma \backslash X$, le mélange topologique du flot géodésique et l’existence d’une feuille dense pour le feuilletage fortement stable.
LA - fre
KW - geodesic flow; foliation; discontinuous isometry group; homogeneous space
UR - http://eudml.org/doc/75446
ER -

References

top
  1. [B] M. BOURDON, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, L'Ens. Math., 41 (1995), 63-102. Zbl0871.58069MR96f:58120
  2. [Bo1] B. BOWDITCH, Geometrical finiteness with variable negative curvature, Duke Math. Jour., Vol. 77, n° 1 (1995), 229-274. Zbl0877.57018MR96b:53056
  3. [Bo2] B. BOWDITCH, Relatively hyperbolic groups, Preprint 1999. 
  4. [D] F. DAL'BO, Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Bras. Math., Vol. 30, n° 2 (1999). Zbl1058.53063
  5. [DP] F. DAL'BO, M. PEIGNÉ, Some negatively curved manifolds with cusps, mixing and counting, J. reine angew Math., 497 (1998), 141-169. Zbl0890.53043MR99c:58124
  6. [DS] F. DAL'BO, A. STARKOV, On a classification of limit points of infinitely generated Schottky groups, Prépublication Rennes, 1999. Zbl0963.30028
  7. [E1] P. EBERLEIN, Geodesic flows on negatively curved manifolds, I, Ann. of Math., Vol. 95, n° 3 (1973), 492-510. Zbl0217.47304MR46 #10024
  8. [E2] P. EBERLEIN, Geodesic flows on negatively curved manifolds, II, Trans. of the A.M.S., Vol. 178 (1973), 57-82. Zbl0264.53027MR47 #2636
  9. [E3] P. EBERLEIN, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, 1996. Zbl0883.53003MR98h:53002
  10. [GR] Y. GUIVARC'H - A. RAUGI, Products of random matrices : convergence theorem, Contemp. Math., Vol. 50 (1986), 31-53. Zbl0592.60015MR87m:60024
  11. [H] G.A. HEDLUND, Fuchsian group and transitive horocycles, Duke Math. J., 2 (1936), 530-542. Zbl0015.10201JFM62.0392.03
  12. [K] I. KIM, Rigidity of rank one symmetric spaces and their product, (à paraître dans Topology). Zbl0997.53034
  13. [NW] P. NICHOLLS, P. WATERMAN, Limit points via Schottky groups, LMS Lectures Notes, 173 (1992), 190-195. Zbl0767.30034MR94a:20082
  14. [O] J.P. OTAL, Sur la géométrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Revista Mathematica Iber. Amer., 8, n° 3 (1992). Zbl0777.53042MR94a:58077
  15. [S] M. SHUB, Stabilité globale des systèmes dynamiques, Astérisque, 56 (1978). Zbl0396.58014MR80c:58015
  16. [S1] A. STARKOV, Parabolic fixed points of kleinian groups and the horospherical foliation on hyperbolic manifolds, Int. Journ. of Math., Vol. 8 n° 2 (1997), 289-299. Zbl0874.57027MR98d:58144
  17. [S2] A. STARKOV, Fuchsian groups from the dynamical viewpoint, Jour. of Dyn. and Control System, 1 (1995), 427-445. Zbl0986.37033MR96i:58140
  18. [T] P. TUKIA, Conical limit points and uniform convergence groups, J. reine angew Math., 501 (1998), 71-98. Zbl0909.30034MR2000b:30067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.