Representations of p -adic symplectic groups

Marko Tadić

Compositio Mathematica (1994)

  • Volume: 90, Issue: 2, page 123-181
  • ISSN: 0010-437X

How to cite

top

Tadić, Marko. "Representations of $p$-adic symplectic groups." Compositio Mathematica 90.2 (1994): 123-181. <http://eudml.org/doc/90271>.

@article{Tadić1994,
author = {Tadić, Marko},
journal = {Compositio Mathematica},
keywords = {nonarchimedean local field; principal series representations; square integrable representations; regular characters},
language = {eng},
number = {2},
pages = {123-181},
publisher = {Kluwer Academic Publishers},
title = {Representations of $p$-adic symplectic groups},
url = {http://eudml.org/doc/90271},
volume = {90},
year = {1994},
}

TY - JOUR
AU - Tadić, Marko
TI - Representations of $p$-adic symplectic groups
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 90
IS - 2
SP - 123
EP - 181
LA - eng
KW - nonarchimedean local field; principal series representations; square integrable representations; regular characters
UR - http://eudml.org/doc/90271
ER -

References

top
  1. [Ba] Barbasch, D., The unitary dual for complex classical groups, Invent. Math.96 (1989), 103-176. Zbl0692.22006MR981739
  2. [BnDKa] Bernstein, J., Deligne, P. and Kazhdan, D., Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math.42 (1986), 180-192. Zbl0634.22011MR874050
  3. [BnZ1] Bernstein, I.N. and Zelevinsky, A.V., Representations of the group GL(n, F), where F is a local non-Archimedean field, Uspekhi Mat. Nauk.31 (1976), 5-70. Zbl0348.43007MR425030
  4. [BnZ2] Bernstein, J. and Zelevinsky, A.V., Induced representations of reductive p-adic groups I, Ann. Sci. École Norm Sup.10 (1977), 441-472. Zbl0412.22015MR579172
  5. [BlWh] Borel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton University Press, Princeton, 1980. Zbl0443.22010MR554917
  6. [Bu] Bourbaki, N., Algébre, Hermann, Paris, 1947-59. 
  7. [Cr] Cartier, P., Representations of p-adic groups; a survey, Symp. Pure Math.33, part 1, pp. 111-155, Amer. Math. Soc., Providence, Rhode Island, 1979. Zbl0421.22010MR546593
  8. [Cs] Casselman, W., Introduction to the theory of admissible representations of p-adic reductive groups, preprint. 
  9. [F] Faddeev, D.K., On multiplication of representations of classical groups over finite field with representations of the full linear group (in Russian), Vestnik Leningradskogo Universiteta13 (1976), 35-40. Zbl0436.20025
  10. [GbKn] Gelbart, S.S. and Knapp, A.W., L-indistinguishability and R groups for the special linear group, Advan. in Math.43 (1982), 101-121. Zbl0493.22005MR644669
  11. [GfKa] Gelfand, I.M. and Kazhdan, D.A., Representations of GL(n, k), Lie Groups and their Representations, Halstead Press, Budapest, 1974, pp. 95-118. Zbl0348.22011
  12. [Go] Goldberg, D., Reducibility of induced representations for Sp(2n) and SO(n), preprint. Zbl0851.22021
  13. [Gu] Gustafson, R., The degenerate principal series for Sp(2n), Mem. of the Amer. Math. Society248 (1981), 1-81. Zbl0482.22013MR631958
  14. [Jc] Jacquet, H., Generic representations, Non-Commutative Harmonic Analysis, Lecture Notes in Math.587, Springer Verlag, Berlin, 1977, pp. 91-101. Zbl0357.22010MR499005
  15. [Jn] Jantzen, C., Degenerate principal series for symplectic groups, Mem. Amer. Math. Society488 (1993), 1-110. Zbl0814.22004MR1134591
  16. [KaL] Kazhdan, D. and Lusztig, G., Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math.87 (1987), 153-215. Zbl0613.22004MR862716
  17. [Ke] Keys, D., On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pacific J. Math.101 (1982), 351-388. Zbl0438.22010MR675406
  18. [KuRa] Kudla, S.S. and Rallis, S., Ramified degenerate principal series representations for Sp(n), Israel Y. Math.78 (1992), 209-256. Zbl0787.22019MR1194967
  19. [M] Moy, A., Representations of GSp(4) over a p-adic field: parts 1 and 2, Compositio Math.66 (1988), 237-328. Zbl0662.22012MR948308
  20. [R1] Rodier, F., Décomposition de la série principale des groupes réductifs p-adiques, Non-Commutative Harmonic Analysis, Lecture Notes in Math.880, Springer-Verlag, Berlin, 1981. Zbl0465.22009MR644842
  21. [R2] Rodier, F., Sur les représentations non ramifiées des groupes réductifs p-adiques; l'example de GSp(4), Bull. Soc. Math. France116 (1988), 15-42. Zbl0662.22011MR946277
  22. [SaT] Sally, P.J. and Tadić, M., Induced representations and classifications for GSp(2, F) and Sp(2, F), Memoires Soc. Math. France.52 (1993), 75-133. Zbl0784.22008MR1212952
  23. [Sh] Shahidi, F., A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math.132 (1990), 273-330. Zbl0780.22005MR1070599
  24. [Si1] Silberger, A., Isogeny restrictions of irreducible representations are finite direct sums of irreducible admissible representations, Proceedings Amer. Math. Soc.73 (1979), 263-264. Zbl0368.22009MR516475
  25. [Si2] Silberger, A., Discrete series and classifications for p-adic groups I, Amer. J. Math.103 (1981), 1231-1321. Zbl0484.22026MR636960
  26. [T1] Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup.19 (1986), 335-382. Zbl0614.22005MR870688
  27. [T2] Tadić, M., Induced representations of GL(n, A) for p-adic division algebras A, J. reine angew. Math.405 (1990), 48-77. Zbl0684.22008MR1040995
  28. [T3] Tadić, M., Notes on representations of non-archimedian SL(n), Pacific J. Math.152 (1992), 375-396. Zbl0724.22017MR1141803
  29. [T4] Tadić, M., On Jacquet modules of induced representations of p-adic symplectic groups, Harmonic Analysis on Reductive Groups, Proceedings, Bowdoin College 1989, Progress in Mathematics101, Birkhauser, Boston, 1991, pp. 305-314. Zbl0760.22008MR1168490
  30. [T5] Tadić, M., A structure arising from induction and restriction of representations of classical p-adic groups, preprint. Zbl0874.22014
  31. [T6] Tadić, M., On regular square integrable representations of p-adic groups, preprint. Zbl0903.22008MR1600280
  32. [Wd] Waldspurger, J.-L., Un exercice sur GSp(4, F) et les représeniations de Weil, Bull. Soc. Math. France115 (1987), 35-69. Zbl0635.22016MR897614
  33. [Wi] Winarsky, N., Reducibility of principal series representations of p-adic Chevalley groups, Amer. J. Math.100 (1978), 941-956. Zbl0475.43005MR517138
  34. [Z1] Zelevinsky, A.V., Induced representations of reductive p-adic group II, On irreducible representations of GL(n), Ann. Sci. École Norm Sup.13 (1980), 165-210. Zbl0441.22014MR584084
  35. [Z2] Zelevinsky, A.V., Representations of Finite Classical Groups, A Hopf Algebra Approach, Lecture Notes in Math869, Springer-Verlag, Berlin, 1981. Zbl0465.20009MR643482

NotesEmbed ?

top

You must be logged in to post comments.