Representations of p -adic symplectic groups

Marko Tadić

Compositio Mathematica (1994)

  • Volume: 90, Issue: 2, page 123-181
  • ISSN: 0010-437X

How to cite

top

Tadić, Marko. "Representations of $p$-adic symplectic groups." Compositio Mathematica 90.2 (1994): 123-181. <http://eudml.org/doc/90271>.

@article{Tadić1994,
author = {Tadić, Marko},
journal = {Compositio Mathematica},
keywords = {nonarchimedean local field; principal series representations; square integrable representations; regular characters},
language = {eng},
number = {2},
pages = {123-181},
publisher = {Kluwer Academic Publishers},
title = {Representations of $p$-adic symplectic groups},
url = {http://eudml.org/doc/90271},
volume = {90},
year = {1994},
}

TY - JOUR
AU - Tadić, Marko
TI - Representations of $p$-adic symplectic groups
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 90
IS - 2
SP - 123
EP - 181
LA - eng
KW - nonarchimedean local field; principal series representations; square integrable representations; regular characters
UR - http://eudml.org/doc/90271
ER -

References

top
  1. [Ba] Barbasch, D., The unitary dual for complex classical groups, Invent. Math.96 (1989), 103-176. Zbl0692.22006MR981739
  2. [BnDKa] Bernstein, J., Deligne, P. and Kazhdan, D., Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math.42 (1986), 180-192. Zbl0634.22011MR874050
  3. [BnZ1] Bernstein, I.N. and Zelevinsky, A.V., Representations of the group GL(n, F), where F is a local non-Archimedean field, Uspekhi Mat. Nauk.31 (1976), 5-70. Zbl0348.43007MR425030
  4. [BnZ2] Bernstein, J. and Zelevinsky, A.V., Induced representations of reductive p-adic groups I, Ann. Sci. École Norm Sup.10 (1977), 441-472. Zbl0412.22015MR579172
  5. [BlWh] Borel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton University Press, Princeton, 1980. Zbl0443.22010MR554917
  6. [Bu] Bourbaki, N., Algébre, Hermann, Paris, 1947-59. 
  7. [Cr] Cartier, P., Representations of p-adic groups; a survey, Symp. Pure Math.33, part 1, pp. 111-155, Amer. Math. Soc., Providence, Rhode Island, 1979. Zbl0421.22010MR546593
  8. [Cs] Casselman, W., Introduction to the theory of admissible representations of p-adic reductive groups, preprint. 
  9. [F] Faddeev, D.K., On multiplication of representations of classical groups over finite field with representations of the full linear group (in Russian), Vestnik Leningradskogo Universiteta13 (1976), 35-40. Zbl0436.20025
  10. [GbKn] Gelbart, S.S. and Knapp, A.W., L-indistinguishability and R groups for the special linear group, Advan. in Math.43 (1982), 101-121. Zbl0493.22005MR644669
  11. [GfKa] Gelfand, I.M. and Kazhdan, D.A., Representations of GL(n, k), Lie Groups and their Representations, Halstead Press, Budapest, 1974, pp. 95-118. Zbl0348.22011
  12. [Go] Goldberg, D., Reducibility of induced representations for Sp(2n) and SO(n), preprint. Zbl0851.22021
  13. [Gu] Gustafson, R., The degenerate principal series for Sp(2n), Mem. of the Amer. Math. Society248 (1981), 1-81. Zbl0482.22013MR631958
  14. [Jc] Jacquet, H., Generic representations, Non-Commutative Harmonic Analysis, Lecture Notes in Math.587, Springer Verlag, Berlin, 1977, pp. 91-101. Zbl0357.22010MR499005
  15. [Jn] Jantzen, C., Degenerate principal series for symplectic groups, Mem. Amer. Math. Society488 (1993), 1-110. Zbl0814.22004MR1134591
  16. [KaL] Kazhdan, D. and Lusztig, G., Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math.87 (1987), 153-215. Zbl0613.22004MR862716
  17. [Ke] Keys, D., On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pacific J. Math.101 (1982), 351-388. Zbl0438.22010MR675406
  18. [KuRa] Kudla, S.S. and Rallis, S., Ramified degenerate principal series representations for Sp(n), Israel Y. Math.78 (1992), 209-256. Zbl0787.22019MR1194967
  19. [M] Moy, A., Representations of GSp(4) over a p-adic field: parts 1 and 2, Compositio Math.66 (1988), 237-328. Zbl0662.22012MR948308
  20. [R1] Rodier, F., Décomposition de la série principale des groupes réductifs p-adiques, Non-Commutative Harmonic Analysis, Lecture Notes in Math.880, Springer-Verlag, Berlin, 1981. Zbl0465.22009MR644842
  21. [R2] Rodier, F., Sur les représentations non ramifiées des groupes réductifs p-adiques; l'example de GSp(4), Bull. Soc. Math. France116 (1988), 15-42. Zbl0662.22011MR946277
  22. [SaT] Sally, P.J. and Tadić, M., Induced representations and classifications for GSp(2, F) and Sp(2, F), Memoires Soc. Math. France.52 (1993), 75-133. Zbl0784.22008MR1212952
  23. [Sh] Shahidi, F., A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math.132 (1990), 273-330. Zbl0780.22005MR1070599
  24. [Si1] Silberger, A., Isogeny restrictions of irreducible representations are finite direct sums of irreducible admissible representations, Proceedings Amer. Math. Soc.73 (1979), 263-264. Zbl0368.22009MR516475
  25. [Si2] Silberger, A., Discrete series and classifications for p-adic groups I, Amer. J. Math.103 (1981), 1231-1321. Zbl0484.22026MR636960
  26. [T1] Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup.19 (1986), 335-382. Zbl0614.22005MR870688
  27. [T2] Tadić, M., Induced representations of GL(n, A) for p-adic division algebras A, J. reine angew. Math.405 (1990), 48-77. Zbl0684.22008MR1040995
  28. [T3] Tadić, M., Notes on representations of non-archimedian SL(n), Pacific J. Math.152 (1992), 375-396. Zbl0724.22017MR1141803
  29. [T4] Tadić, M., On Jacquet modules of induced representations of p-adic symplectic groups, Harmonic Analysis on Reductive Groups, Proceedings, Bowdoin College 1989, Progress in Mathematics101, Birkhauser, Boston, 1991, pp. 305-314. Zbl0760.22008MR1168490
  30. [T5] Tadić, M., A structure arising from induction and restriction of representations of classical p-adic groups, preprint. Zbl0874.22014
  31. [T6] Tadić, M., On regular square integrable representations of p-adic groups, preprint. Zbl0903.22008MR1600280
  32. [Wd] Waldspurger, J.-L., Un exercice sur GSp(4, F) et les représeniations de Weil, Bull. Soc. Math. France115 (1987), 35-69. Zbl0635.22016MR897614
  33. [Wi] Winarsky, N., Reducibility of principal series representations of p-adic Chevalley groups, Amer. J. Math.100 (1978), 941-956. Zbl0475.43005MR517138
  34. [Z1] Zelevinsky, A.V., Induced representations of reductive p-adic group II, On irreducible representations of GL(n), Ann. Sci. École Norm Sup.13 (1980), 165-210. Zbl0441.22014MR584084
  35. [Z2] Zelevinsky, A.V., Representations of Finite Classical Groups, A Hopf Algebra Approach, Lecture Notes in Math869, Springer-Verlag, Berlin, 1981. Zbl0465.20009MR643482

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.