Galois representations

Richard Taylor

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 1, page 73-119
  • ISSN: 0240-2963

How to cite

top

Taylor, Richard. "Galois representations." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.1 (2004): 73-119. <http://eudml.org/doc/73621>.

@article{Taylor2004,
author = {Taylor, Richard},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Galois representations; -functions; modularity},
language = {eng},
number = {1},
pages = {73-119},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Galois representations},
url = {http://eudml.org/doc/73621},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Taylor, Richard
TI - Galois representations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 1
SP - 73
EP - 119
LA - eng
KW - Galois representations; -functions; modularity
UR - http://eudml.org/doc/73621
ER -

References

top
  1. [A] Artin ( E.) , Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren , Abh. Math. Sem. Univ. Hamburg8, p. 292-306 (1930). Zbl56.0173.02JFM56.0173.02
  2. [AC] Arthur ( J. ) and Clozel ( L.), Simple algebras, base change and the advanced theory of the trace formula, Annals of Math. Studies120, PUP (1989). Zbl0682.10022MR1007299
  3. [Berg] Berger ( L.), Représentations p-adiques et équations différentielles , Invent. math.148, p. 219-284 (2002). Zbl1113.14016MR1906150
  4. [Bert] Berthelot ( P.), Altérations de variétés algébriques (d'après A.J.de Jong, Astérisque241, p. 273-311 (1997). Zbl0924.14007MR1472543
  5. [BCDT] Breuil ( C.), Conrad ( B.), Diamond ( F.) and Taylor ( R.), On the modularity of elliptic curves over Q, J.A.M.S. 14, p. 843-939 (2001). Zbl0982.11033MR1839918
  6. [BFH] Bump ( D. ), Friedberg ( S.) and Hoffstein ( J.), Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. math.102, p. 543-618 (1990). Zbl0721.11023MR1074487
  7. [BK] Bloch ( S.) and Kato ( K.), L-functions and Tamagawa numbers of motives , in "The Grothendieck Festschrift I", Birkauser (1990). Zbl0768.14001MR1086888
  8. [Br] Brauer ( R.) , On Artin's L-series with general group characters, Ann. Math. (2) 48, p. 502-514 (1947). Zbl0029.01503MR20105
  9. [BSD] Birch ( B.) and Swinnerton-Dyer ( P.), Notes on elliptic curves II, J. Reine Angew. Math.218, p. 79-108 (1965). Zbl0147.02506MR179168
  10. [BT] Buzzard ( K. ) and Taylor ( R.), Companion forms and weight one forms, Annals of math149, p. 905-919 (1999). Zbl0965.11019MR1709306
  11. [CDT] Conrad ( B.), Diamond ( F.) and Taylor ( R.), Modularity of certain potentially Barsotti-Tate Galois representations, JAMS12, p. 521-567 (1999). Zbl0923.11085MR1639612
  12. [Cl1] Clozel ( L.) , Motifs et formes automorphes : applications du principe de fonctorialité, in "Automorphic forms, Shimura varieties and L-functions I" , Academic Press (1990). Zbl0705.11029MR1044819
  13. [Cl2] Clozel ( L.), Représentations Galoisiennes associées aux representations automorphes autoduales de GL(n, Pub. Math. IHES73, p. 97-145 (1991). Zbl0739.11020MR1114211
  14. [CPS1] Cogdell ( J.) and Piatetski-Shapiro ( I.), Converse theorems for GLn, Publ. Math. IHES79, p. 157-214 (1994). Zbl0814.11033MR1307299
  15. [CPS2] Cogdell ( J.) and Piatetski-Shapiro ( I.), Converse theorems for GLn II, J. reine angew. Math.507, p. 165-188 (1999). Zbl0912.11022MR1670207
  16. [De1] Deligne ( P. ) , Les constantes des équations fonctionnelles des fonctions L, in LNM 349, Springer ( 1973). Zbl0271.14011MR349635
  17. [De2] Deligne ( P. ) , Courbes elliptiques : formulaire d'après Tate, in "Modular functions of one variable IV", LNM 476, Springer (1975). MR387292
  18. [De3] Deligne ( P.), La conjecture de Weil I, Publ. Math. IHES43, p. 273-307 (1974). MR340258
  19. [Dia] Diamond ( F.), The Taylor-Wiles construction and multiplicity one, Invent. Math.128, p. 379-391 (1997). Zbl0916.11037MR1440309
  20. [Dix] Dixniier ( J. ) , Algèbres enveloppantes, Gauthier Villars (1974). 
  21. [Dr] Drinfeld ( V.), Proof of the global Langlands conjecture for GL(2) over a function field, Funct. anal. and its appl.11, p. 223-225 (1977). Zbl0423.12010MR498489
  22. [Fa] Faltings ( G.), Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. math.73, p. 349-366 (1983). Zbl0588.14026
  23. [Fo1] Fontaine ( J.-M. ), talk at "Mathematische Arbeitstagung 1988 ", Maz-Planck-Institut für Mathematik preprint no. 30 of 1988. 
  24. [Fo2] Fontaine ( J.-M.), Le corps des périodes p-adiques, Astérisque223, p. 59-111 (1994). Zbl0940.14012MR1293971
  25. [Fo3] Fontaine ( J.-M.), Représentations p-adiques semi-stables , Astérisque223, p. 113-184 (1994). Zbl0865.14009MR1293972
  26. [Fo4] Fontaine ( J.-M.), Représentations l-adiques potentiellement semi-stables, Astérisque223, p. 321-347 (1994). Zbl0873.14020MR1293977
  27. [FM] Fontaine ( J.-M. ) and Mazur ( B.), Geometric Galois representations, in Elliptic curves, modular forms and Fermat's last theorem (J.Coates and S.-T.Yau eds.), International Press (1995). Zbl0839.14011MR1363495
  28. [G] Grothendieck ( A.), Formule de Lefschetz et rationalité des fonctions L, in "Dix exposés sur la cohomologie des schémas ", North-Holland (1968). Zbl0197.47102MR476737
  29. [GeJ] Gelbart ( S.) and Jacquet ( H.), A relation between automorphic representations of GL(2) and GL(3, Ann. Sci. ENS11, p. 471-552 (1978). Zbl0406.10022MR533066
  30. [GoJ] Godenient and Jacquet ( H.), Zeta functions of simple algebras, LNM 260, Springer (1972). Zbl0244.12011MR374100
  31. [GZ] Gross ( B. ) and Zagier ( D.), Heegner points and derivatives of L-series, Invent. math.84, p. 225-320 (1986). Zbl0608.14019MR833192
  32. [Har] Harris ( M.) , The local Langlands conjecture for GL(n) over a p-adic field, n &lt; p, Invent. Math.134, p. 177-210 (1998). Zbl0921.11060
  33. [Hec] Hecke ( E.) , Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung I, II, Math. Ann.114, p. 1-28 and p. 316-351 (1937). Zbl0015.40202MR1513122JFM63.0339.03
  34. [Hen1] Henniart ( G.), On the local Langlands conjecture for GL(n): the cyclic case, Ann. of Math.123, 145-203 (1986). Zbl0588.12010MR825841
  35. [Hen2] Henniart ( G.), Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adiques, Invent. math.139, p. 439-455 (2000). Zbl1048.11092MR1738446
  36. [Her] Herbrand ( J.), Sur les classes des corps circulaires, J. Math. Pures Appl.11, p. 417-441 (1932). Zbl58.0180.02JFM58.0180.02
  37. [HT] Harris ( M.) and Taylor ( R.), The geometry and cohomology of some simple Shimura varieties, PUP (2001). Zbl1036.11027
  38. [Ih] Ihara ( Y.) , On modular curves over finite fields, in " Proceedings of an international colloquium on discrete subgroups of Lie groups and applications to moduli" OUP (1975 ). Zbl0343.14007MR399105
  39. [Il] Illusie ( L.), Cohomologie de de Rham et cohomologie étale p-adique, Astérisque189-190, p. 325-374 (1990). MR1099881
  40. [J] Jacquet ( H. ) , Principal L-functions of the linear group , in "Automorphic forms, representations and L-functions 2 " AMS (1979). Zbl0413.12007MR546609
  41. [JL] Jacquet ( H. ) and Langlands ( R.), Automorphic forms on GL(2), LNM 114, Springer1970. Zbl0236.12010MR401654
  42. [JPSS1] Jacquet ( H.), Piatetski-Shapiro ( I.) and Shalika ( J.), Automorphic forms on GL(3, Annals of math. 109, p. 169-258 (1979). Zbl0401.10037MR519356
  43. [JPSS2] Jacquet ( H.), Piatetski-Shapiro ( I.) and Shalika ( J.), Relèevement cubique non normal, C. R. Acad. Sci. Paris Sér. I Math.292 no. 12, p. 567-571 (1981). Zbl0475.12017MR615450
  44. [JS] Jacquet ( H.) and Shalika ( J.), On Euler products and the classification of automorphic representations II, Amer. J. Math.103, p. 777-815 (1981). Zbl0491.10020MR623137
  45. [Kol1] Kolyvagin ( V.), Finiteness of E(Q) and Sh(E, Q) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat.52, p. 522-540 (1988). Zbl0662.14017MR954295
  46. [Kol2] Kolyvagin ( V.), On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves, in "Proceedings of the Kyoto International Congress of Mathematicians" Math. Soc. Japan (1991). Zbl0749.14012MR1159231
  47. [Kot] Kottwitz ( R.), On the λ-adic representations associated to some simple Shimura varieties, Invent. math.108, p. 653-665 (1992). Zbl0765.22011MR1163241
  48. [Laf] Lafforgue ( L.), Chtoukas de Drinfeld et correspondance de Langlands, Invent. math.147, p. 1-241 (2002). Zbl1038.11075MR1875184
  49. [Lan1] Langlands ( R.P. ), On the classification of representations of real reductive groups, mimeographed notes from the IAS, ( 1973 ). 
  50. [Lan2] Langlands ( R.P. ), Automorphic representations, Shimura varieties and motives. Ein Märchen. in "Automorphic forms, representations and L-functions II" AMS ( 1979). Zbl0447.12009
  51. [Lan3] Langlands ( R.P.), Base change for GL(2, Annals of Math. Studies96, Princeton Univ. Press, Princeton, ( 1980). Zbl0444.22007MR574808
  52. [Lau] Laumon ( G.), Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Publ. math. IHES65, p. 131-210 (1987). Zbl0641.14009MR908218
  53. [Ma] Mann ( W.R.) , Local level raising for GLn, preprint. 
  54. [MB] Moret-Bailly ( L.), Groupes de Picard et problèmes de Skolem II, Ann. Sci. ENS22, p. 181-194 (1989). Zbl0704.14015MR1005158
  55. [Mi] Miyake ( T.) , Modular forms, Springer (1989). Zbl0701.11014MR1021004
  56. [MM] Murty ( R.) and Murty ( K.), Mean values of derivatives of modular L-series , Ann. of Math. (2) 133, p. 447-475 (1991). Zbl0745.11032MR1109350
  57. [P] Pop ( F.) , Embedding problems over large fields, Annals of Math.144, p. 1-34 (1996). Zbl0862.12003MR1405941
  58. [PS] Piatetski-Shapiro ( I.), Zeta functions of GL(n, Univ. Maryland Techn. Rep. TR76-46 (1976). 
  59. [R1] Ribet ( K. ), A modular construction of unramified p-extensions of Q(μp), Invent. math.34, p. 151-162 (1976). Zbl0338.12003MR419403
  60. [R2] Ribet ( K.) , Congruence relations between modular forms, in "Proceedings of the Warsaw ICM" Polish Scientific Publishers (1984). Zbl0575.10024MR804706
  61. [Sa] Savitt ( D.) , Modularity of some potentially Barsotti-Tate Galois representations , preprint. Zbl1053.11048MR2004122
  62. [Se1] Serre ( J.-P. ) , Corps locaux, Hermann ( 1962). MR354618
  63. [Se2] Serre ( J.-P. ) , Abelian l-adic representations and elliptic curves, Benjamin (1968). Zbl0186.25701MR263823
  64. [SGA4] Artin ( M.) , Grothendieck ( A.) and Verdier ( J.L.), Théorie des topos et cohomologie étale des schémas, LNM 269 and 270 and 305, Springer (1972/73). MR354653
  65. [SGA5] Illusie ( L. ) , Cohomologie l-adique et fonctions L, LNM 589Springer (1977). Zbl0352.14009MR491704
  66. [SW1] Skinner ( C.) and Wiles ( A.), Residually reducible representations and modular forms, Inst. Hautes Etudes Sci. Publ. Math.89, p. 5-126 (1999). Zbl1005.11030MR1793414
  67. [SW2] Skinner ( C.) and Wiles ( A.), Base change and a problem of Serre, Duke Math. J.107, p. 15-25 (2001). Zbl1016.11017MR1815248
  68. [SW3] Skinner ( C.) and Wiles ( A.), Nearly ordinary deformations of irreducible residual representations, Annales de la Faculté des Sciences de ToulouseX, p. 185-215 (2001). Zbl1024.11036MR1928993
  69. [Tat] Tate ( J. ), Number theoretic background, in A. Borel and W.Casselman "Automorphic forms, representations and L-functions" , Proc. Symposia in Pure Math.33 (2), AMS (1979). Zbl0422.12007MR546607
  70. [Tay] Taylor ( R.) , On the meromorphic continuation of degree two L-functions , preprint available at http://www.math.harvard.edu/rtaylor. Zbl1138.11051
  71. [Tu] Tunnell ( J.), Artin's conjecture for representations of octahedral type, Bull. AMS5, p. 173-175 (1981). Zbl0475.12016MR621884
  72. [TW] Taylor ( R. ) and Wiles ( A.), Ring theoretic properties of certain Hecke algebras, Annals of Math.141, p. 553-572 (1995). Zbl0823.11030MR1333036
  73. [vW] Van Der Waall ( R.), On Brauer's induction formula of characters of groups, Arch. Math.63, p. 208-210 (1994). Zbl0842.20010MR1287248
  74. [We] Weil ( A.) , Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen , Math. Ann.168, p. 149-156 (1967). Zbl0158.08601MR207658
  75. [Wi] Wiles ( A. ), Modular elliptic curves and Fermat's last theorem, Annals of Math.141, 443-551 (1995). Zbl0823.11029MR1333035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.