Functoriality for the classical groups

J. W. Cogdell; H. H. Kim; I. I. Piatetski-Shapiro; F. Shahidi

Publications Mathématiques de l'IHÉS (2004)

  • Volume: 99, page 163-233
  • ISSN: 0073-8301

How to cite

top

Cogdell, J. W., et al. "Functoriality for the classical groups." Publications Mathématiques de l'IHÉS 99 (2004): 163-233. <http://eudml.org/doc/104205>.

@article{Cogdell2004,
author = {Cogdell, J. W., Kim, H. H., Piatetski-Shapiro, I. I., Shahidi, F.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Langlands programme; Converse Theorems; Eisenstein series; globally generic representations; L-functions; conductors; Mœglin’s conjecture; Ramanujan conjecture},
language = {eng},
pages = {163-233},
publisher = {Springer},
title = {Functoriality for the classical groups},
url = {http://eudml.org/doc/104205},
volume = {99},
year = {2004},
}

TY - JOUR
AU - Cogdell, J. W.
AU - Kim, H. H.
AU - Piatetski-Shapiro, I. I.
AU - Shahidi, F.
TI - Functoriality for the classical groups
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 99
SP - 163
EP - 233
LA - eng
KW - Langlands programme; Converse Theorems; Eisenstein series; globally generic representations; L-functions; conductors; Mœglin’s conjecture; Ramanujan conjecture
UR - http://eudml.org/doc/104205
ER -

References

top
  1. 1. J. Arthur, The principle of functoriality, Bull. Am. Math. Soc., 40 (2002), 39–53. Zbl1158.11346MR1943132
  2. 2. A. Borel, Automorphic L-functions, Proc. Symp. Pure Math., 33, part 2 (1979), 27–61. Zbl0412.10017MR546608
  3. 3. N. Bourbaki, Algèbre Commutative, Ch. 3 et 4, Actualités Scientifiques et Industrielles, no. 1293. Hermann, Paris (1961). 
  4. 4. W. Casselman and F. Shahidi, On reducibility of standard modules for generic representations, Ann. Sci. Éc. Norm. Supér., 31 (1998), 561–589. Zbl0947.11022MR1634020
  5. 5. J. W. Cogdell, Dual groups and Langlands Functoriality, An Introduction to the Langlands Program (J. Bernstein and S. Gelbart, eds.). Birkhäuser, Boston (2003), 251–268. Zbl1111.11314MR1990382
  6. 6. J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to GLN, Publ. Math., Inst. Hautes Étud. Sci., 93 (2001), 5–30. Zbl1028.11029MR1863734
  7. 7. J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn , Publ. Math., Inst. Hautes Étud. Sci., 79 (1994), 157–214. Zbl0814.11033MR1307299
  8. 8. J. W. Cogdell and I. I. Piatetski-Shapiro, Stability of gamma factors for SO(2n+1), Manuscr. Math., 95 (1998), 437–461. Zbl0959.22011MR1618194
  9. 9. J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn , II, J. Reine Angew. Math., 507 (1999), 165–188. Zbl0912.11022MR1670207
  10. 10. J. W. Cogdell, I. I. Piatetski-Shapiro, and F. Shahidi, On stability of local γ-factors, in preparation. Zbl1175.11024
  11. 11. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Supér., IV. Sér., 11 (1978), 471–542. Zbl0406.10022MR533066
  12. 12. S. Gelbart and F. Shahidi, Boundedness of automorphic L-functions in vertical strips, J. Am. Math. Soc., 14 (2001), 79–107. Zbl1050.11053MR1800349
  13. 13. D. Ginzburg, S. Rallis, and D. Soudry, Generic automorphic forms on SO(2n+1): functorial lift to GL(2n), endoscopy, and base change, Int. Math. Res. Not., 2001, no. 14 (2001), 729–764. Zbl1060.11031MR1846354
  14. 14. R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lect. Notes Math., 260. Springer-Verlag, Berlin (1972). Zbl0244.12011MR342495
  15. 15. M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud., 151. Princeton University Press, Princeton (2001). Zbl1036.11027MR1876802
  16. 16. G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires, Invent. Math., 113 (1993), 339–350. Zbl0810.11069
  17. 17. G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math., 139 (2000), 439–455. Zbl1048.11092MR1738446
  18. 18. R. Howe and I. I. Piatetski-Shapiro, A counter-example to the “generalized Ramanujan conjecture” for (quasi)-split groups, Proc. Symp. Pure Math., 33, part 1 (1979), 315–322. Zbl0423.22018
  19. 19. H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire., Math. Ann., 256 (1981), 199–214. Zbl0443.22013MR620708
  20. 20. H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Rankin-Selberg convolutions, Am. J. Math., 105 (1983), 367–464. Zbl0525.22018MR701565
  21. 21. H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations, Am. J. Math., 103 (1981), 499–558 and 777–815. Zbl0473.12008
  22. 22. H. Jacquet and J. Shalika, The Whittaker models for induced representations, Pac. J. Math., 109 (1983), 107–120. Zbl0535.22017MR716292
  23. 23. H. Jacquet and J. Shalika, A lemma on highly ramified ε-factors, Math. Ann., 271 (1985), 319–332. Zbl0541.12010
  24. 24. C. Jantzen, On square integrable representations of classical p-adic groups, Can. J. Math., 52 (2000), 539–581. Zbl0995.22003MR1758232
  25. 25. C. Jantzen, On square integrable representations of classical p-adic groups II, Represent. Theory, 4 (2000), 127–180. Zbl1045.22018MR1789464
  26. 26. D. Jiang and D. Soudry, The local converse theorem for SO(2n+1) and applications, Ann. Math., 157 (2003), 743–806. Zbl1049.11055MR1983781
  27. 27. D. Jiang and D. Soudry, Generic representations and local Langlands reciprocity law for p-adic SO2n+1, Contributions to Automorphic Forms, Geometry and Number Theory (Shalikafest 2002) (H. Hida, D. Ramakrishnan, and F. Shahidi, eds.). Johns Hopkins University Press, Baltimore, to appear. Zbl1062.11077MR2058617
  28. 28. H. Kim, Langlands–Shahidi method and poles of automorphic L-functions, II, Isr. J. Math., 117 (2000), 261–284. Zbl1041.11035MR1760595
  29. 29. H. Kim, Residual spectrum of odd orthogonal groups, Int. Math. Res. Not. 2001, no. 17 (2001), 873–906. Zbl1035.11020MR1859343
  30. 30. H. Kim, Applications of Langlands’ functoriality of odd orthogonal groups, Trans. Am. Math. Soc., 354 (2002), 2775–2796. Zbl1060.11033
  31. 31. H. Kim, On local L-functions and normalized intertwining operators, Can. J. Math., to appear. Zbl1096.11019MR2134402
  32. 32. H. Kim and F. Shahidi, Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. Math., 155 (2002), 837–893. Zbl1040.11036MR1923967
  33. 33. L. Lafforgue, Chtoucas de Drinfeld at correspondance de Langlands, Invent. Math., 147 (2002) 1–241. Zbl1038.11075MR1875184
  34. 34. R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surv. Monogr., 31. Am. Math. Soc., Providence, RI (1989), 101–170. Zbl0741.22009MR1011897
  35. 35. R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Proc. Symp. Pure Math., 33, part 2 (1979), 205–246. Zbl0447.12009MR546619
  36. 36. R. P. Langlands, Where stands functoriality today, Proc. Symp. Pure Math., 61 (1997), 457–471. Zbl0901.11032MR1476510
  37. 37. W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan conjecture for GL(n), Proc. Symp. Pure Math., 66, part 2 (1999), 301–310. Zbl0965.11023MR1703764
  38. 38. C. Moeglin, Points de réducibilité pour les induits de cuspidals, preprint (2001). Zbl1028.22016
  39. 39. C. Moeglin, Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc., 4 (2002), 141–200. Zbl1002.22009MR1913095
  40. 40. C. Moeglin and M. Tadić, Construction of discrete series for p-adic classical groups, J. Am. Math. Soc., 15 (2002), 715–786. Zbl0992.22015MR1896238
  41. 41. C. Moeglin and J-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., 22 (1989), 605–674. Zbl0696.10023MR1026752
  42. 42. G. Muić, On generic irreducible representations of Sp(n,F) and SO(2n+1,F), Glas. Mat., III. Ser., 33 (53) (1998), 19–31. Zbl0905.22009MR1652772
  43. 43. G. Muić, Some results on square integrable representations; Irreducibility of standard representations, Int. Math. Res. Not., 1998, no. 14 (1998), 705–726. Zbl0909.22029MR1637097
  44. 44. G. Muić, A proof of Casselman-Shahidi’s conjecture for quasi-split classical groups, Can. Math. Bull., 44 (2001), 298–312. Zbl0984.22007
  45. 45. I. I. Piatetski-Shapiro, Multiplicity one theorems, Proc. Symp. Pure Math., 33, part 1 (1979), 209–212. Zbl0423.22017MR546599
  46. 46. P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity, J. Funct. Anal., 184 (2001), 419–453. Zbl1006.11022MR1851004
  47. 47. I. Satake, Theory of spherical functions on reductive algebraic groups over 𝔭 -adic fields, Publ. Math., Inst. Hautes Étud. Sci., 18 (1963), 5–69. Zbl0122.28501MR195863
  48. 48. F. Shahidi, On certain L-functions, Am. J. Math., 103 (1981), 297–355. Zbl0467.12013MR610479
  49. 49. F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J., 52 (1985), 973–1007. Zbl0674.10027MR816396
  50. 50. F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. Math., 127 (1988), 547–584. Zbl0654.10029MR942520
  51. 51. F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. Math., 132 (1990), 273–330. Zbl0780.22005
  52. 52. F. Shahidi, On multiplicativity of local factors, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem (1990), 279–289. Zbl0841.11061MR1159120
  53. 53. F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J., 66 (1992), 1–41. Zbl0785.22022MR1159430
  54. 54. F. Shahidi, Twists of a general class of L-functions by highly ramified characters, Can. Math. Bull., 43 (2000), 380–384. Zbl1016.11016MR1776066
  55. 55. F. Shahidi, Local coefficients as Mellin transforms of Bessel functions; Towards a general stability, Int. Math. Res. Not., 2002, no. 39 (2002), 2075–2119. Zbl1025.22014MR1926651
  56. 56. D. Soudry, On Langlands functoriality from classical groups to GLn , Astérisque, to appear. Zbl1086.11025MR2141707
  57. 57. R. Steinberg, Lectures on Chevalley Groups. Yale Lecture Notes, New Haven (1967). MR466335
  58. 58. M. Tadić, Classification of unitary representations in irreducible representations of general linear groups (non-Archimedean case), Ann. Sci. Éc. Norm. Supér., IV. Sér., 19 (1986), 335–382. Zbl0614.22005MR870688
  59. 59. J. Tate, Number theoretic background, Proc. Symp. Pure Math., 33, part 2 (1979), 3–26. Zbl0422.12007MR546607
  60. 60. D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math., 48 (1978), 75–98. Zbl0389.17002MR506503
  61. 61. A. Zelevinsky, Induced representations of reductive 𝔭 –adic groups, II, Ann. Sci. Éc. Norm. Supér., 13 (1980), 165–210. Zbl0441.22014MR584084
  62. 62. Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators, Pac. J. Math., 180 (1997), 386–398. Zbl1073.22502MR1487571

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.