Functoriality for the classical groups
J. W. Cogdell; H. H. Kim; I. I. Piatetski-Shapiro; F. Shahidi
Publications Mathématiques de l'IHÉS (2004)
- Volume: 99, page 163-233
- ISSN: 0073-8301
Access Full Article
topHow to cite
topCogdell, J. W., et al. "Functoriality for the classical groups." Publications Mathématiques de l'IHÉS 99 (2004): 163-233. <http://eudml.org/doc/104205>.
@article{Cogdell2004,
author = {Cogdell, J. W., Kim, H. H., Piatetski-Shapiro, I. I., Shahidi, F.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Langlands programme; Converse Theorems; Eisenstein series; globally generic representations; L-functions; conductors; Mœglin’s conjecture; Ramanujan conjecture},
language = {eng},
pages = {163-233},
publisher = {Springer},
title = {Functoriality for the classical groups},
url = {http://eudml.org/doc/104205},
volume = {99},
year = {2004},
}
TY - JOUR
AU - Cogdell, J. W.
AU - Kim, H. H.
AU - Piatetski-Shapiro, I. I.
AU - Shahidi, F.
TI - Functoriality for the classical groups
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 99
SP - 163
EP - 233
LA - eng
KW - Langlands programme; Converse Theorems; Eisenstein series; globally generic representations; L-functions; conductors; Mœglin’s conjecture; Ramanujan conjecture
UR - http://eudml.org/doc/104205
ER -
References
top- 1. J. Arthur, The principle of functoriality, Bull. Am. Math. Soc., 40 (2002), 39–53. Zbl1158.11346MR1943132
- 2. A. Borel, Automorphic L-functions, Proc. Symp. Pure Math., 33, part 2 (1979), 27–61. Zbl0412.10017MR546608
- 3. N. Bourbaki, Algèbre Commutative, Ch. 3 et 4, Actualités Scientifiques et Industrielles, no. 1293. Hermann, Paris (1961).
- 4. W. Casselman and F. Shahidi, On reducibility of standard modules for generic representations, Ann. Sci. Éc. Norm. Supér., 31 (1998), 561–589. Zbl0947.11022MR1634020
- 5. J. W. Cogdell, Dual groups and Langlands Functoriality, An Introduction to the Langlands Program (J. Bernstein and S. Gelbart, eds.). Birkhäuser, Boston (2003), 251–268. Zbl1111.11314MR1990382
- 6. J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to GLN, Publ. Math., Inst. Hautes Étud. Sci., 93 (2001), 5–30. Zbl1028.11029MR1863734
- 7. J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn , Publ. Math., Inst. Hautes Étud. Sci., 79 (1994), 157–214. Zbl0814.11033MR1307299
- 8. J. W. Cogdell and I. I. Piatetski-Shapiro, Stability of gamma factors for SO(2n+1), Manuscr. Math., 95 (1998), 437–461. Zbl0959.22011MR1618194
- 9. J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorems for GLn , II, J. Reine Angew. Math., 507 (1999), 165–188. Zbl0912.11022MR1670207
- 10. J. W. Cogdell, I. I. Piatetski-Shapiro, and F. Shahidi, On stability of local γ-factors, in preparation. Zbl1175.11024
- 11. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Supér., IV. Sér., 11 (1978), 471–542. Zbl0406.10022MR533066
- 12. S. Gelbart and F. Shahidi, Boundedness of automorphic L-functions in vertical strips, J. Am. Math. Soc., 14 (2001), 79–107. Zbl1050.11053MR1800349
- 13. D. Ginzburg, S. Rallis, and D. Soudry, Generic automorphic forms on SO(2n+1): functorial lift to GL(2n), endoscopy, and base change, Int. Math. Res. Not., 2001, no. 14 (2001), 729–764. Zbl1060.11031MR1846354
- 14. R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lect. Notes Math., 260. Springer-Verlag, Berlin (1972). Zbl0244.12011MR342495
- 15. M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties, Ann. Math. Stud., 151. Princeton University Press, Princeton (2001). Zbl1036.11027MR1876802
- 16. G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires, Invent. Math., 113 (1993), 339–350. Zbl0810.11069
- 17. G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math., 139 (2000), 439–455. Zbl1048.11092MR1738446
- 18. R. Howe and I. I. Piatetski-Shapiro, A counter-example to the “generalized Ramanujan conjecture” for (quasi)-split groups, Proc. Symp. Pure Math., 33, part 1 (1979), 315–322. Zbl0423.22018
- 19. H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire., Math. Ann., 256 (1981), 199–214. Zbl0443.22013MR620708
- 20. H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Rankin-Selberg convolutions, Am. J. Math., 105 (1983), 367–464. Zbl0525.22018MR701565
- 21. H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations, Am. J. Math., 103 (1981), 499–558 and 777–815. Zbl0473.12008
- 22. H. Jacquet and J. Shalika, The Whittaker models for induced representations, Pac. J. Math., 109 (1983), 107–120. Zbl0535.22017MR716292
- 23. H. Jacquet and J. Shalika, A lemma on highly ramified ε-factors, Math. Ann., 271 (1985), 319–332. Zbl0541.12010
- 24. C. Jantzen, On square integrable representations of classical p-adic groups, Can. J. Math., 52 (2000), 539–581. Zbl0995.22003MR1758232
- 25. C. Jantzen, On square integrable representations of classical p-adic groups II, Represent. Theory, 4 (2000), 127–180. Zbl1045.22018MR1789464
- 26. D. Jiang and D. Soudry, The local converse theorem for SO(2n+1) and applications, Ann. Math., 157 (2003), 743–806. Zbl1049.11055MR1983781
- 27. D. Jiang and D. Soudry, Generic representations and local Langlands reciprocity law for p-adic SO2n+1, Contributions to Automorphic Forms, Geometry and Number Theory (Shalikafest 2002) (H. Hida, D. Ramakrishnan, and F. Shahidi, eds.). Johns Hopkins University Press, Baltimore, to appear. Zbl1062.11077MR2058617
- 28. H. Kim, Langlands–Shahidi method and poles of automorphic L-functions, II, Isr. J. Math., 117 (2000), 261–284. Zbl1041.11035MR1760595
- 29. H. Kim, Residual spectrum of odd orthogonal groups, Int. Math. Res. Not. 2001, no. 17 (2001), 873–906. Zbl1035.11020MR1859343
- 30. H. Kim, Applications of Langlands’ functoriality of odd orthogonal groups, Trans. Am. Math. Soc., 354 (2002), 2775–2796. Zbl1060.11033
- 31. H. Kim, On local L-functions and normalized intertwining operators, Can. J. Math., to appear. Zbl1096.11019MR2134402
- 32. H. Kim and F. Shahidi, Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. Math., 155 (2002), 837–893. Zbl1040.11036MR1923967
- 33. L. Lafforgue, Chtoucas de Drinfeld at correspondance de Langlands, Invent. Math., 147 (2002) 1–241. Zbl1038.11075MR1875184
- 34. R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surv. Monogr., 31. Am. Math. Soc., Providence, RI (1989), 101–170. Zbl0741.22009MR1011897
- 35. R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Proc. Symp. Pure Math., 33, part 2 (1979), 205–246. Zbl0447.12009MR546619
- 36. R. P. Langlands, Where stands functoriality today, Proc. Symp. Pure Math., 61 (1997), 457–471. Zbl0901.11032MR1476510
- 37. W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan conjecture for GL(n), Proc. Symp. Pure Math., 66, part 2 (1999), 301–310. Zbl0965.11023MR1703764
- 38. C. Moeglin, Points de réducibilité pour les induits de cuspidals, preprint (2001). Zbl1028.22016
- 39. C. Moeglin, Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc., 4 (2002), 141–200. Zbl1002.22009MR1913095
- 40. C. Moeglin and M. Tadić, Construction of discrete series for p-adic classical groups, J. Am. Math. Soc., 15 (2002), 715–786. Zbl0992.22015MR1896238
- 41. C. Moeglin and J-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér., 22 (1989), 605–674. Zbl0696.10023MR1026752
- 42. G. Muić, On generic irreducible representations of Sp(n,F) and SO(2n+1,F), Glas. Mat., III. Ser., 33 (53) (1998), 19–31. Zbl0905.22009MR1652772
- 43. G. Muić, Some results on square integrable representations; Irreducibility of standard representations, Int. Math. Res. Not., 1998, no. 14 (1998), 705–726. Zbl0909.22029MR1637097
- 44. G. Muić, A proof of Casselman-Shahidi’s conjecture for quasi-split classical groups, Can. Math. Bull., 44 (2001), 298–312. Zbl0984.22007
- 45. I. I. Piatetski-Shapiro, Multiplicity one theorems, Proc. Symp. Pure Math., 33, part 1 (1979), 209–212. Zbl0423.22017MR546599
- 46. P. Sarnak, Estimates for Rankin-Selberg L-functions and quantum unique ergodicity, J. Funct. Anal., 184 (2001), 419–453. Zbl1006.11022MR1851004
- 47. I. Satake, Theory of spherical functions on reductive algebraic groups over -adic fields, Publ. Math., Inst. Hautes Étud. Sci., 18 (1963), 5–69. Zbl0122.28501MR195863
- 48. F. Shahidi, On certain L-functions, Am. J. Math., 103 (1981), 297–355. Zbl0467.12013MR610479
- 49. F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J., 52 (1985), 973–1007. Zbl0674.10027MR816396
- 50. F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. Math., 127 (1988), 547–584. Zbl0654.10029MR942520
- 51. F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. Math., 132 (1990), 273–330. Zbl0780.22005
- 52. F. Shahidi, On multiplicativity of local factors, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem (1990), 279–289. Zbl0841.11061MR1159120
- 53. F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J., 66 (1992), 1–41. Zbl0785.22022MR1159430
- 54. F. Shahidi, Twists of a general class of L-functions by highly ramified characters, Can. Math. Bull., 43 (2000), 380–384. Zbl1016.11016MR1776066
- 55. F. Shahidi, Local coefficients as Mellin transforms of Bessel functions; Towards a general stability, Int. Math. Res. Not., 2002, no. 39 (2002), 2075–2119. Zbl1025.22014MR1926651
- 56. D. Soudry, On Langlands functoriality from classical groups to GLn , Astérisque, to appear. Zbl1086.11025MR2141707
- 57. R. Steinberg, Lectures on Chevalley Groups. Yale Lecture Notes, New Haven (1967). MR466335
- 58. M. Tadić, Classification of unitary representations in irreducible representations of general linear groups (non-Archimedean case), Ann. Sci. Éc. Norm. Supér., IV. Sér., 19 (1986), 335–382. Zbl0614.22005MR870688
- 59. J. Tate, Number theoretic background, Proc. Symp. Pure Math., 33, part 2 (1979), 3–26. Zbl0422.12007MR546607
- 60. D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math., 48 (1978), 75–98. Zbl0389.17002MR506503
- 61. A. Zelevinsky, Induced representations of reductive –adic groups, II, Ann. Sci. Éc. Norm. Supér., 13 (1980), 165–210. Zbl0441.22014MR584084
- 62. Y. Zhang, The holomorphy and nonvanishing of normalized local intertwining operators, Pac. J. Math., 180 (1997), 386–398. Zbl1073.22502MR1487571
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.