On complete intersections

Franc Forstnerič[1]

  • [1] University of Ljubljana, IMFM, Jadranska 19, 1000 Ljubljana (Slovénie)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 2, page 497-512
  • ISSN: 0373-0956

Abstract

top
We construct closed complex submanifolds of n which are differential but not holomorphic complete intersections. We also prove a homotopy principle concerning the removal of intersections with certain complex subvarieties of n .

How to cite

top

Forstnerič, Franc. "On complete intersections." Annales de l’institut Fourier 51.2 (2001): 497-512. <http://eudml.org/doc/115923>.

@article{Forstnerič2001,
abstract = {We construct closed complex submanifolds of $\{\mathbb \{C\}^n\}$ which are differential but not holomorphic complete intersections. We also prove a homotopy principle concerning the removal of intersections with certain complex subvarieties of $\{\mathbb \{C\}\}^n$.},
affiliation = {University of Ljubljana, IMFM, Jadranska 19, 1000 Ljubljana (Slovénie)},
author = {Forstnerič, Franc},
journal = {Annales de l’institut Fourier},
keywords = {complete intersections; homotopy principle; complete intersection; Stein manifold; Oka-Grauert homotopy principle; proper holomorphic embeddings},
language = {eng},
number = {2},
pages = {497-512},
publisher = {Association des Annales de l'Institut Fourier},
title = {On complete intersections},
url = {http://eudml.org/doc/115923},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Forstnerič, Franc
TI - On complete intersections
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 2
SP - 497
EP - 512
AB - We construct closed complex submanifolds of ${\mathbb {C}^n}$ which are differential but not holomorphic complete intersections. We also prove a homotopy principle concerning the removal of intersections with certain complex subvarieties of ${\mathbb {C}}^n$.
LA - eng
KW - complete intersections; homotopy principle; complete intersection; Stein manifold; Oka-Grauert homotopy principle; proper holomorphic embeddings
UR - http://eudml.org/doc/115923
ER -

References

top
  1. E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1-21 Zbl0154.08501MR200476
  2. J. Bochnak, W. Kucharz, Complete intersections in differential topology and analytic geometry, Boll. Un. Mat. Ital.B (7) 10 (1996), 1019-1041 Zbl0904.57013MR1430164
  3. H. Cartan, Espaces fibrés analytiques, Symposium Internat. de topologia algebraica, Mexico (1958) vol. 2 (1979), 97-121, Springer, New York Zbl0121.30503
  4. E.M. Chirka, Complex analytic sets, (1989), Kluwer Academic Publishers Group, Dordrecht Zbl0683.32002MR1111477
  5. P.G. Dixon, J. Esterle, Michael's problem and the Poincaré--Fatou--Bieberbach phenomenon, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 127-187 Zbl0608.32008MR854551
  6. Y. Eliashberg, M. Gromov, Embeddings of Stein manifolds, Ann. Math. 136 (1992), 123-135 Zbl0758.32012MR1173927
  7. O. Forster, K.J. Ramspott, Analytische Modulgarben und Endromisbündel, Invent. Math. 2 (1966), 145-170 Zbl0154.33401MR218618
  8. F. Forstnerič, Complex tangents of real surfaces in complex surfaces, Duke Math. J. 67 (1992), 353-376 Zbl0761.53032MR1177310
  9. F. Forstnerič, Interpolation by holomorphic automorphisms and embeddings in n , J. Geom. Anal. 9 (1999), 93-118 Zbl0963.32006MR1760722
  10. F. Forstnerič, J. Prezelj, Oka's principle for holomorphic fiber bundles with sprays, Math. Ann. 317 (2000), 117-154 Zbl0964.32017MR1760671
  11. F. Forstnerič, J. Prezelj, Oka's principle for holomorphic submersions with sprays, (1999) Zbl1011.32006
  12. F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of n , Invent. Math. 112 (1993), 323-349 Zbl0792.32011MR1213106
  13. H. Grauert, R. Remmert, Theory of Stein Spaces, 227 (1977), Springer, New York Zbl0433.32007MR513229
  14. M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851-897 Zbl0686.32012MR1001851
  15. C. Gunning, H. Rossi, Analytic functions of several complex variables, (1965), Prentice--Hall, Englewood Cliffs Zbl0141.08601MR180696
  16. H.A. Hamm, Zur Homotopietyp Steinscher Räume, J. Reine Angew. Math. 338 (1983), 121-135 Zbl0491.32010MR684017
  17. D. Husemoller, Fibre bundles, 20 (1994), Springer-Verlag, New York Zbl0794.55001MR1249482
  18. J.-P. Rosay, W. Rudin, Holomorphic maps from n to n , Trans. Amer. Math. Soc. 310 (1988), 47-86 Zbl0708.58003MR929658
  19. M. Schneider, On the number of equations needed to describe a variety, Complex analysis of several variables (Madison, Wis., 1982) 41 (1984), 163-180, Amer. Math. Soc., Providence, R.I Zbl0539.32009
  20. J. Schürmann, Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann. 307 (1997), 381-399 Zbl0881.32007MR1437045
  21. G.W. Whitehead, Elements of homotopy theory, 61 (1978), Springer, New York--Berlin Zbl0406.55001MR516508
  22. H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263-273 Zbl0081.07401MR98199
  23. F. Forstnerič, J.-P. Rosay, Erratum: “Approximation of biholomorphic mappings by automorphisms of n , Invent. Math. 118 (1994), 573-574 Zbl0808.32017MR1296357

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.