Automata, algebraicity and distribution of sequences of powers
Jean-Paul Allouche[1]; Jean-Marc Deshouillers[2]; Teturo Kamae[3]; Tadahiro Koyanagi[3]
- [1] CNRS, LRI, Bâtiment 490, 91405 Orsay Cedex (France)
- [2] Université de Bordeaux I, Laboratoire de Mathématiques, 351 cours de la Libération, 33405 Talence Cedex (France)
- [3] Osaka City University, Department of Mathematics, Osaka 558-8585 (Japon)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 3, page 687-705
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAllouche, Jean-Paul, et al. "Automata, algebraicity and distribution of sequences of powers." Annales de l’institut Fourier 51.3 (2001): 687-705. <http://eudml.org/doc/115926>.
@article{Allouche2001,
abstract = {Let $K$ be a finite field of characteristic $p$. Let $K((x))$ be the field of formal
Laurent series $f(x)$ in $x$ with coefficients in $K$. That is,\[ f(x)=\sum \_\{n =
n\_0\}^\{\infty \}f\_nx^n \]with $n_0\in \{\bf Z\}$ and $f_n\in K (n=n_0,n_0+1,\cdots )$. We
discuss the distribution of $(\lbrace f^m\rbrace )_\{m=0,1,2,\cdots \}$ for $f\in K((x))$, where\[
\lbrace f\rbrace :=\sum \_\{n=0\}^\{\infty \}f\_nx^n\in K[[x]] \]denotes the nonnegative part of $f\in K((x))$. This is a little different from the real number case where the fractional part
that excludes constant term (digit of order 0) is considered. We give an alternative
proof of a result by De Mathan obtaining the generic distribution for $f$ with $f_n\ne 0$ for some $n<0$. This distribution is not the uniform measure on $K[[x]]$, but is
equivalent to it. We have a different situation for $f\in K[[x]]$, where if $f_0\ne 0$ and $f\ne f_0$, then the distribution for $f$ is continuous but has a small support. We
prove in this case, that the distribution for $f^\{-1\}$ is identical with the distribution
for $f_0^\{-2\}f$. Christol, Kamae, Mendès France and Rauzy proved that the algebraicity of
$f(x)\in K((x))$ over $K(x)$ is equivalent to the $p$-automaticity of the sequence
$(f_n)$. This result was generalized to the multidimensional case by Salon. Hence, if the
Laurent series $f(x)\in K((x))$ is algebraic over $K(x)$, then\[
F(x,y):=\sum \_\{m=0\}^\infty f(x)^my^m \]is $2$-dimensionally $p$-automatic, since it is
algebraic over the field $K(x,y)$. We construct a finite automaton recognizing the
sequence of coefficients of this double series $F(x,y)$ to discuss the distribution of
$(\lbrace f^m\rbrace )_\{m\ge 0\}$. Thus, we generalize results by Houndonougbo and Deshouillers, and
strengthen results by Allouche and Deshouillers.},
affiliation = {CNRS, LRI, Bâtiment 490, 91405 Orsay Cedex (France); Université de Bordeaux I, Laboratoire de Mathématiques, 351 cours de la Libération, 33405 Talence Cedex (France); Osaka City University, Department of Mathematics, Osaka 558-8585 (Japon); Osaka City University, Department of Mathematics, Osaka 558-8585 (Japon)},
author = {Allouche, Jean-Paul, Deshouillers, Jean-Marc, Kamae, Teturo, Koyanagi, Tadahiro},
journal = {Annales de l’institut Fourier},
keywords = {distribution of powers; algebraic formal Laurent series; automatic sequences},
language = {eng},
number = {3},
pages = {687-705},
publisher = {Association des Annales de l'Institut Fourier},
title = {Automata, algebraicity and distribution of sequences of powers},
url = {http://eudml.org/doc/115926},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Allouche, Jean-Paul
AU - Deshouillers, Jean-Marc
AU - Kamae, Teturo
AU - Koyanagi, Tadahiro
TI - Automata, algebraicity and distribution of sequences of powers
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 3
SP - 687
EP - 705
AB - Let $K$ be a finite field of characteristic $p$. Let $K((x))$ be the field of formal
Laurent series $f(x)$ in $x$ with coefficients in $K$. That is,\[ f(x)=\sum _{n =
n_0}^{\infty }f_nx^n \]with $n_0\in {\bf Z}$ and $f_n\in K (n=n_0,n_0+1,\cdots )$. We
discuss the distribution of $(\lbrace f^m\rbrace )_{m=0,1,2,\cdots }$ for $f\in K((x))$, where\[
\lbrace f\rbrace :=\sum _{n=0}^{\infty }f_nx^n\in K[[x]] \]denotes the nonnegative part of $f\in K((x))$. This is a little different from the real number case where the fractional part
that excludes constant term (digit of order 0) is considered. We give an alternative
proof of a result by De Mathan obtaining the generic distribution for $f$ with $f_n\ne 0$ for some $n<0$. This distribution is not the uniform measure on $K[[x]]$, but is
equivalent to it. We have a different situation for $f\in K[[x]]$, where if $f_0\ne 0$ and $f\ne f_0$, then the distribution for $f$ is continuous but has a small support. We
prove in this case, that the distribution for $f^{-1}$ is identical with the distribution
for $f_0^{-2}f$. Christol, Kamae, Mendès France and Rauzy proved that the algebraicity of
$f(x)\in K((x))$ over $K(x)$ is equivalent to the $p$-automaticity of the sequence
$(f_n)$. This result was generalized to the multidimensional case by Salon. Hence, if the
Laurent series $f(x)\in K((x))$ is algebraic over $K(x)$, then\[
F(x,y):=\sum _{m=0}^\infty f(x)^my^m \]is $2$-dimensionally $p$-automatic, since it is
algebraic over the field $K(x,y)$. We construct a finite automaton recognizing the
sequence of coefficients of this double series $F(x,y)$ to discuss the distribution of
$(\lbrace f^m\rbrace )_{m\ge 0}$. Thus, we generalize results by Houndonougbo and Deshouillers, and
strengthen results by Allouche and Deshouillers.
LA - eng
KW - distribution of powers; algebraic formal Laurent series; automatic sequences
UR - http://eudml.org/doc/115926
ER -
References
top- J.-P. Allouche, E. Cateland, W. J. Gilbert, H.-O. Peitgen, J. Shallit, G. Skordev, Automatic maps on semiring with digits, Theory Comput. Syst. (Math. Systems Theory) 30 (1997), 285-331 Zbl0870.68105MR1432196
- J.-P. Allouche, J.-M. Deshouillers, Répartition de la suite des puissances d'une série formelle algébrique, Colloque de Théorie Analytique des Nombres Jean Coquet, Journées SMF-CNRS, CIRM Luminy 1985 88--02 (1988), 37-47, Publications Mathématiques d'Orsay Zbl0713.11045
- G. Christol, Ensembles presque périodiques -reconnaissables, Theoret. Comput. Sci. 9 (1979), 141-145 Zbl0402.68044MR535129
- G. Christol, T. Kamae, M. Mendès, France, G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401-419 Zbl0472.10035MR614317
- J.-M. Deshouillers, Sur la répartition modulo des puissances d’un élément de , Proc. Queen's Number Theory Conf. 1979 54 (1980), 437-439 Zbl0466.10032
- J.-M. Deshouillers, La répartition modulo 1 des puissances de rationnels dans l'anneau des séries formelles sur un corps fini, Sém. de Théorie des Nombres de Bordeaux 1979/1980 Exposé no 5 (1980), 1-22 Zbl0435.10023
- J.-M. Deshouillers, La répartition modulo des puissances d’un élément dans , Recent progress in analytic number theory, (Durham, 1979) Vol. 2 (1981), 69-72, Academic Press, London-New York Zbl0466.10031
- F. Von Haeseler, A. Petersen, Automaticity of rational functions, Beiträge zur Algebra und Geometrie 39 (1998), 219-229 Zbl0895.68093MR1614440
- F. Von Haeseler, On algebraic properties of sequences generated by substitutions over a group, (1996)
- V. Houndonougbo, Mesure de répartition d’une suite dans un corps de séries formelles sur un corps fini, C. R. Acad. Sci. Paris, Série A 288 (1979), 997-999 Zbl0422.10029MR540376
- B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl., Mém. 21 (1970), 1-93 Zbl0221.10037MR274396
- O. Salon, Suites automatiques à multi-indices et algébricité, C. R. Acad. Sci. Paris, Série I 305 (1987), 501-504 Zbl0628.10007MR916320
- O. Salon, Propriétés arithmétiques des automates multidimensionnels, (1989)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.