# Semi-infinite cohomology and superconformal algebras

Elena Poletaeva^{[1]}

- [1] Lund University, Centre for Mathematical Sciences, Box 118, 221 00 Lund (Suède)

Annales de l’institut Fourier (2001)

- Volume: 51, Issue: 3, page 745-768
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topPoletaeva, Elena. "Semi-infinite cohomology and superconformal algebras." Annales de l’institut Fourier 51.3 (2001): 745-768. <http://eudml.org/doc/115928>.

@article{Poletaeva2001,

abstract = {We describe representations of certain superconformal algebras in the semi-infinite Weil
complex related to the loop algebra of a complex finite-dimensional Lie algebra and in
the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed
with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite
cohomology of the loop algebra has a structure, which is analogous to the classical
structure of the de Rham cohomology in Kähler geometry.},

affiliation = {Lund University, Centre for Mathematical Sciences, Box 118, 221 00 Lund (Suède)},

author = {Poletaeva, Elena},

journal = {Annales de l’institut Fourier},

keywords = {Weil complex; semi-infinite cohomology; superconformal algebra; Kähler geometry},

language = {eng},

number = {3},

pages = {745-768},

publisher = {Association des Annales de l'Institut Fourier},

title = {Semi-infinite cohomology and superconformal algebras},

url = {http://eudml.org/doc/115928},

volume = {51},

year = {2001},

}

TY - JOUR

AU - Poletaeva, Elena

TI - Semi-infinite cohomology and superconformal algebras

JO - Annales de l’institut Fourier

PY - 2001

PB - Association des Annales de l'Institut Fourier

VL - 51

IS - 3

SP - 745

EP - 768

AB - We describe representations of certain superconformal algebras in the semi-infinite Weil
complex related to the loop algebra of a complex finite-dimensional Lie algebra and in
the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed
with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite
cohomology of the loop algebra has a structure, which is analogous to the classical
structure of the de Rham cohomology in Kähler geometry.

LA - eng

KW - Weil complex; semi-infinite cohomology; superconformal algebra; Kähler geometry

UR - http://eudml.org/doc/115928

ER -

## References

top- M. Ademollo, L. Brink, A. D' Adda, R. D' Auria, E. Napolitano, S. Sciuto, E. Del, Giudice, P. Di, Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Rettorino, Dual strings with $U\left(1\right)$ colour symmetry, Nucl. Phys. B111 (1976), 77-110
- F. Akman, Some cohomology operators in $2-D$ field theory, Proceedings of the conference on Quantum topology (Manhattan, KS, 1993) (1994), 1-19, World Sci. Publ., River Edge, NJ Zbl1036.81514
- B. L. Feigin, Private communication
- D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, (1986), Consultants Bureau, New York and London Zbl0667.17005MR874337
- B. Feigin, E. Frenkel, Semi-infinite Weil Complex and the Virasoro Algebra, Commun. Math. Phys. 137 (1991), 617-639 Zbl0726.17035MR1105434
- B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, Equivalence between chain categories of representations of affine $\mathrm{sl}\left(2\right)$ and $N=2$ superconformal algebras, J. Math. Phys. 39 (1998), 3865-3905 Zbl0935.17011MR1630542
- E. Getzler, Two-dimensional topological gravity and equivariant cohomology, Commun. Math. Phys. 163 (1994), 473-489 Zbl0806.53073MR1284793
- P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-Interscience Publ., New York Zbl0408.14001MR507725
- V. G. Kac, J. W. van de Leur, On Classification of Superconformal Algebras, Strings-88 (1989), 77-106, World Scientific Zbl0938.17500
- E. Poletaeva, Semi-infinite Weil complex and $N=2$ superconformal algebra I Zbl1067.17012
- E. Poletaeva, Superconformal algebras and Lie superalgebras of the Hodge theory Zbl1044.17017MR1976379
- E. Poletaeva, Semi-infinite cohomology and superconformal algebras, Comptes Rendus de l'Académie des Sciences, Série I t. 326 (1998), 533-538 Zbl0923.17022MR1649528
- I. Frenkel, H. Garland, G. Zuckerman, Semi-infinite cohomology and string theory, Proc. Natl. Acad. Sci. U.S.A. 83 (1986), 8442-8446 Zbl0607.17007MR865483
- B. Feigin, E. Frenkel, Erratum "Semi-infinite Weil Complex and the Virasoro Algebra", Commun. Math. Phys. 147 (1992), 647-648 Zbl0753.17033MR1175498
- E. Poletaeva, Semi-infinite Weil complex and superconformal algebras II Zbl1067.17012

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.