Semi-infinite cohomology and superconformal algebras

Elena Poletaeva[1]

  • [1] Lund University, Centre for Mathematical Sciences, Box 118, 221 00 Lund (Suède)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 3, page 745-768
  • ISSN: 0373-0956

Abstract

top
We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler geometry.

How to cite

top

Poletaeva, Elena. "Semi-infinite cohomology and superconformal algebras." Annales de l’institut Fourier 51.3 (2001): 745-768. <http://eudml.org/doc/115928>.

@article{Poletaeva2001,
abstract = {We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler geometry.},
affiliation = {Lund University, Centre for Mathematical Sciences, Box 118, 221 00 Lund (Suède)},
author = {Poletaeva, Elena},
journal = {Annales de l’institut Fourier},
keywords = {Weil complex; semi-infinite cohomology; superconformal algebra; Kähler geometry},
language = {eng},
number = {3},
pages = {745-768},
publisher = {Association des Annales de l'Institut Fourier},
title = {Semi-infinite cohomology and superconformal algebras},
url = {http://eudml.org/doc/115928},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Poletaeva, Elena
TI - Semi-infinite cohomology and superconformal algebras
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 3
SP - 745
EP - 768
AB - We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler geometry.
LA - eng
KW - Weil complex; semi-infinite cohomology; superconformal algebra; Kähler geometry
UR - http://eudml.org/doc/115928
ER -

References

top
  1. M. Ademollo, L. Brink, A. D' Adda, R. D' Auria, E. Napolitano, S. Sciuto, E. Del, Giudice, P. Di, Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Rettorino, Dual strings with U ( 1 ) colour symmetry, Nucl. Phys. B111 (1976), 77-110 
  2. F. Akman, Some cohomology operators in 2 - D field theory, Proceedings of the conference on Quantum topology (Manhattan, KS, 1993) (1994), 1-19, World Sci. Publ., River Edge, NJ Zbl1036.81514
  3. B. L. Feigin, Private communication 
  4. D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, (1986), Consultants Bureau, New York and London Zbl0667.17005MR874337
  5. B. Feigin, E. Frenkel, Semi-infinite Weil Complex and the Virasoro Algebra, Commun. Math. Phys. 137 (1991), 617-639 Zbl0726.17035MR1105434
  6. B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, Equivalence between chain categories of representations of affine sl ( 2 ) and N = 2 superconformal algebras, J. Math. Phys. 39 (1998), 3865-3905 Zbl0935.17011MR1630542
  7. E. Getzler, Two-dimensional topological gravity and equivariant cohomology, Commun. Math. Phys. 163 (1994), 473-489 Zbl0806.53073MR1284793
  8. P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-Interscience Publ., New York Zbl0408.14001MR507725
  9. V. G. Kac, J. W. van de Leur, On Classification of Superconformal Algebras, Strings-88 (1989), 77-106, World Scientific Zbl0938.17500
  10. E. Poletaeva, Semi-infinite Weil complex and N = 2 superconformal algebra I Zbl1067.17012
  11. E. Poletaeva, Superconformal algebras and Lie superalgebras of the Hodge theory Zbl1044.17017MR1976379
  12. E. Poletaeva, Semi-infinite cohomology and superconformal algebras, Comptes Rendus de l'Académie des Sciences, Série I t. 326 (1998), 533-538 Zbl0923.17022MR1649528
  13. I. Frenkel, H. Garland, G. Zuckerman, Semi-infinite cohomology and string theory, Proc. Natl. Acad. Sci. U.S.A. 83 (1986), 8442-8446 Zbl0607.17007MR865483
  14. B. Feigin, E. Frenkel, Erratum "Semi-infinite Weil Complex and the Virasoro Algebra", Commun. Math. Phys. 147 (1992), 647-648 Zbl0753.17033MR1175498
  15. E. Poletaeva, Semi-infinite Weil complex and superconformal algebras II Zbl1067.17012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.