Semi-infinite cohomology and superconformal algebras
- [1] Lund University, Centre for Mathematical Sciences, Box 118, 221 00 Lund (Suède)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 3, page 745-768
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPoletaeva, Elena. "Semi-infinite cohomology and superconformal algebras." Annales de l’institut Fourier 51.3 (2001): 745-768. <http://eudml.org/doc/115928>.
@article{Poletaeva2001,
abstract = {We describe representations of certain superconformal algebras in the semi-infinite Weil
complex related to the loop algebra of a complex finite-dimensional Lie algebra and in
the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed
with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite
cohomology of the loop algebra has a structure, which is analogous to the classical
structure of the de Rham cohomology in Kähler geometry.},
affiliation = {Lund University, Centre for Mathematical Sciences, Box 118, 221 00 Lund (Suède)},
author = {Poletaeva, Elena},
journal = {Annales de l’institut Fourier},
keywords = {Weil complex; semi-infinite cohomology; superconformal algebra; Kähler geometry},
language = {eng},
number = {3},
pages = {745-768},
publisher = {Association des Annales de l'Institut Fourier},
title = {Semi-infinite cohomology and superconformal algebras},
url = {http://eudml.org/doc/115928},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Poletaeva, Elena
TI - Semi-infinite cohomology and superconformal algebras
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 3
SP - 745
EP - 768
AB - We describe representations of certain superconformal algebras in the semi-infinite Weil
complex related to the loop algebra of a complex finite-dimensional Lie algebra and in
the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed
with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite
cohomology of the loop algebra has a structure, which is analogous to the classical
structure of the de Rham cohomology in Kähler geometry.
LA - eng
KW - Weil complex; semi-infinite cohomology; superconformal algebra; Kähler geometry
UR - http://eudml.org/doc/115928
ER -
References
top- M. Ademollo, L. Brink, A. D' Adda, R. D' Auria, E. Napolitano, S. Sciuto, E. Del, Giudice, P. Di, Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Rettorino, Dual strings with colour symmetry, Nucl. Phys. B111 (1976), 77-110
- F. Akman, Some cohomology operators in field theory, Proceedings of the conference on Quantum topology (Manhattan, KS, 1993) (1994), 1-19, World Sci. Publ., River Edge, NJ Zbl1036.81514
- B. L. Feigin, Private communication
- D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, (1986), Consultants Bureau, New York and London Zbl0667.17005MR874337
- B. Feigin, E. Frenkel, Semi-infinite Weil Complex and the Virasoro Algebra, Commun. Math. Phys. 137 (1991), 617-639 Zbl0726.17035MR1105434
- B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, Equivalence between chain categories of representations of affine and superconformal algebras, J. Math. Phys. 39 (1998), 3865-3905 Zbl0935.17011MR1630542
- E. Getzler, Two-dimensional topological gravity and equivariant cohomology, Commun. Math. Phys. 163 (1994), 473-489 Zbl0806.53073MR1284793
- P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-Interscience Publ., New York Zbl0408.14001MR507725
- V. G. Kac, J. W. van de Leur, On Classification of Superconformal Algebras, Strings-88 (1989), 77-106, World Scientific Zbl0938.17500
- E. Poletaeva, Semi-infinite Weil complex and superconformal algebra I Zbl1067.17012
- E. Poletaeva, Superconformal algebras and Lie superalgebras of the Hodge theory Zbl1044.17017MR1976379
- E. Poletaeva, Semi-infinite cohomology and superconformal algebras, Comptes Rendus de l'Académie des Sciences, Série I t. 326 (1998), 533-538 Zbl0923.17022MR1649528
- I. Frenkel, H. Garland, G. Zuckerman, Semi-infinite cohomology and string theory, Proc. Natl. Acad. Sci. U.S.A. 83 (1986), 8442-8446 Zbl0607.17007MR865483
- B. Feigin, E. Frenkel, Erratum "Semi-infinite Weil Complex and the Virasoro Algebra", Commun. Math. Phys. 147 (1992), 647-648 Zbl0753.17033MR1175498
- E. Poletaeva, Semi-infinite Weil complex and superconformal algebras II Zbl1067.17012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.