The θ p invariants of periodic 3-manifolds

Nafaa Chbili[1]

  • [1] Faculté des Sciences de Monastir, Département de Mathématiques, Boulevard de l'Environnement, Monastir 5000 (Tunisie)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 4, page 1135-1150
  • ISSN: 0373-0956

Abstract

top
Let r 2 be an integer. A 3-manifold M is said to be r -periodic if and only if the group G = / r acts smoothly on M with a circle as the set of fixed points. The aim of this paper is to study the invariants θ p ( M ) in the case where M is an r -periodic 3-homology sphere. We use the regularity of the Kauffman bracket of periodic links introduced by Murasugi, to find a relationship between the invariant of M and the invariant of the quotient 3-homology sphere M ¯ . As an application it is shown that the Poincaré space is not the regular r - fold branched covering of S 3 , if r is a prime congruent to ± 1 modulo 5 .

How to cite

top

Chbili, Nafaa. "Les invariants $\theta _p$ des 3-variétés périodiques." Annales de l’institut Fourier 51.4 (2001): 1135-1150. <http://eudml.org/doc/115937>.

@article{Chbili2001,
abstract = {Soit $r$ un entier $&gt;1$. Une 3-variété $M$ est dite $r$-périodique si et seulement si le groupe cyclique $G=\{\mathbb \{Z\}\}/r\{\mathbb \{Z\}\}$ agit semi-librement sur $M$ avec un cercle comme l’ensemble des points fixes. Dans cet article, nous utilisons les invariants quantiques $\theta _\{p\}$ pour établir des conditions nécessaires pour qu’une 3-variété soit périodique.},
affiliation = {Faculté des Sciences de Monastir, Département de Mathématiques, Boulevard de l'Environnement, Monastir 5000 (Tunisie)},
author = {Chbili, Nafaa},
journal = {Annales de l’institut Fourier},
keywords = {periodic 3-manifold; periodic link; homology sphere; quantum invariants},
language = {fre},
number = {4},
pages = {1135-1150},
publisher = {Association des Annales de l'Institut Fourier},
title = {Les invariants $\theta _p$ des 3-variétés périodiques},
url = {http://eudml.org/doc/115937},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Chbili, Nafaa
TI - Les invariants $\theta _p$ des 3-variétés périodiques
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 1135
EP - 1150
AB - Soit $r$ un entier $&gt;1$. Une 3-variété $M$ est dite $r$-périodique si et seulement si le groupe cyclique $G={\mathbb {Z}}/r{\mathbb {Z}}$ agit semi-librement sur $M$ avec un cercle comme l’ensemble des points fixes. Dans cet article, nous utilisons les invariants quantiques $\theta _{p}$ pour établir des conditions nécessaires pour qu’une 3-variété soit périodique.
LA - fre
KW - periodic 3-manifold; periodic link; homology sphere; quantum invariants
UR - http://eudml.org/doc/115937
ER -

References

top
  1. J.K. Bartoszynska, J. Przytycki, 3-Manifold invariants and periodicity of homology spheres Zbl1008.57013
  2. C. Blanchet, N. Habbeger, G. Masbaum, P. Vogel, Three-Manifold invariants derived from the Kauffman bracket, Topology 31 (1992), 685-699 Zbl0771.57004MR1191373
  3. H. Bass, J.W. Morgan, The Smith conjecture, Pure App. Math. 112 (1994) Zbl0599.57001MR758460
  4. N. Chbili, The Jones polynomials of freely periodic knots, J. Knot Th. Ram. 9 (2000), 885-891 Zbl0999.57012MR1780593
  5. N. Chbili, Le polynôme de Homfly des nœuds librement périodiques, C.R. Acad. Sci. Paris, série I 325 (1997), 411-414 Zbl0884.57008
  6. D.L. Goldsmith, Symmetric fibered links. Knots, groups and 3-manifolds, (1975), University press Zbl0331.55001MR380766
  7. J. Hoste, J. Przytycki, A survey of skein modules of 3-manifolds, Proceeding of thel international conference on knot theory and related topics, Knots 90, Osaka (Japan) (1992), 363-379, Walter de Gruyter Zbl0772.57022
  8. L.H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471 Zbl0763.57004MR958895
  9. W.B.R. Lickorish, A representation of orientable combonatorial 3-manifolds, Ann. Math. 76 (1962), 531-540 Zbl0106.37102MR151948
  10. W.B.R. Lickorish, The skein method for 3-manifold invariants, J. Knot Th. Ram. 2 (1993), 171-194 Zbl0793.57003MR1227009
  11. G. Masbaum, J. Roberts, A simple proof of integrality of quantum invariants at prime roots of unity, Math. Proc. Cambridge. Phil. Soc. 121 (1997), 443-454 Zbl0882.57010MR1434653
  12. K. Murasugi, The Jones polynomials of periodic links, Pacific J. Math. 131 (1988), 319-329 Zbl0661.57001MR922222
  13. V.V. Prasolov, A.B. Sossinsky, Knots, Links, Braids and 3-manifolds, Vol. 154 Zbl0864.57002
  14. J. Przytycki, M. Sokolov, Surgeries on periodic links and homology of periodic 3-manifolds Zbl0985.57013MR1857121
  15. N. YU. Reshitikhin, V. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597 Zbl0725.57007
  16. P. Traczyk, Periodic knots and the skein polynomial, Invent. Math. 106 (1991), 73-84 Zbl0753.57008MR1123374
  17. E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399 Zbl0667.57005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.