Non Kählerian equivariant compactifications of an algebraic multiplicative group
François Lescure[1]; Laurent Meersseman[2]
- [1] Université des Sciences & Technologies de Lille, 59655 Villeneuve d’Ascq Cedex (France)
- [2] Université de Rennes I, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 1, page 255-273
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ec. Norm. Sup. 73 (1956), 157-202 Zbl0073.37503MR87184
- B. Grünbaum, Convex polytopes, (1967), London interscience publisher Zbl0163.16603MR226496
- F. Lescure, Compactifications -analytiques équivariantes par des courbes, Mémoire de la S.M.F 115 (1987) Zbl0626.32031
- F. Lescure, Sur les compactifications équivariantes des groupes commutatifs, Ann. Inst. Fourier 38 (1988), 93-120 Zbl0644.32015MR978242
- F. Lescure, Une compactification de de variété d’Albanese nulle et , Publ. interne Lille (IRMA) 23 (1991)
- S. López de Medrano, A. Verjovsky, A new family of complex, compact, non symplectic manifolds, Bol. Soc. Mat. Bra. 28 (1997), 243-267 Zbl0901.53021MR1479504
- L. Meersseman, Construction de variétés compactes complexes, C.R. Acad. Sci. Paris 325 (1997), 1005-1008 Zbl0893.32021MR1485619
- L. Meersseman, A new geometric construction of compact, complex manifolds in any dimension, Math. Ann. 317 (2000), 79-115 Zbl0958.32013MR1760670
- A. Morimoto, On the classification of non compact complex abelian Lie groups, Trans. AMS 123 (1966), 200-228 Zbl0144.07903MR207893
- T. Oda, Convex Bodies and Algebraic Geometry, (1988), Springer, Berlin Zbl0628.52002MR922894
- J. Potters, On Almost Homogeneous Compact Complex Analytic Surfaces, Inventiones Math. 8 (1969), 244-266 Zbl0205.25102MR259166
- C. Vogt, Line bundles on toroidal groups, J. reine angew. Math. 335 (1982), 197-215 Zbl0485.32020MR667467
- R.O. Wells, Differential Analysis on Complex Manifolds, (1973), Prentice Hall, Englewood Cliff Zbl0262.32005MR515872