Commutators associated to a subfactor and its relative commutants

Hsiang-Ping Huang[1]

  • [1] University of California, Department of Mathematics, Los Angeles, CA 90095 (USA)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 1, page 289-301
  • ISSN: 0373-0956

Abstract

top
Let N M be an inclusion of I I 1 factors with finite Jones index. Then M = ( N ' M ) [ N , M ] as a vector space. Here [ N , M ] denotes the vector space spanned by the commutators of the form [ a , b ] where a N , b M .

How to cite

top

Huang, Hsiang-Ping. "Commutators associated to a subfactor and its relative commutants." Annales de l’institut Fourier 52.1 (2002): 289-301. <http://eudml.org/doc/115978>.

@article{Huang2002,
abstract = {Let $N\subseteq M$ be an inclusion of $II_1$ factors with finite Jones index. Then $M = \{(N^\{\prime \} \cap M)\} \oplus [N, M]$ as a vector space. Here $[N, M]$ denotes the vector space spanned by the commutators of the form $[a, b]$ where $a \in N,\, b \in M$.},
affiliation = {University of California, Department of Mathematics, Los Angeles, CA 90095 (USA)},
author = {Huang, Hsiang-Ping},
journal = {Annales de l’institut Fourier},
keywords = {commutator; conditional expectation; relative commutant; subfactor; cyclic tensor product},
language = {eng},
number = {1},
pages = {289-301},
publisher = {Association des Annales de l'Institut Fourier},
title = {Commutators associated to a subfactor and its relative commutants},
url = {http://eudml.org/doc/115978},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Huang, Hsiang-Ping
TI - Commutators associated to a subfactor and its relative commutants
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 289
EP - 301
AB - Let $N\subseteq M$ be an inclusion of $II_1$ factors with finite Jones index. Then $M = {(N^{\prime } \cap M)} \oplus [N, M]$ as a vector space. Here $[N, M]$ denotes the vector space spanned by the commutators of the form $[a, b]$ where $a \in N,\, b \in M$.
LA - eng
KW - commutator; conditional expectation; relative commutant; subfactor; cyclic tensor product
UR - http://eudml.org/doc/115978
ER -

References

top
  1. D. Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Operator algebras and their applications (Waterloo, ON, 1994/1995) 13 (1997), 13-63, Amer. Math. Soc., Providence, RI Zbl0894.46046
  2. M. Choda, Entropy for canonical shifts, Trans. AMS 334 (1992), 827-849 Zbl0773.46032MR1070349
  3. D.E. Evans, Y. Kawahigashi, Quantum symmetries on operator algebras, (1998), Oxford University Press, Oxford Zbl0924.46054MR1642584
  4. Th. Fack, P. de la Harpe, Sommes de commutateurs dans les algèbres de von Neumann finies continues, Ann. Inst. Fourier, Grenoble 30 (1980), 49-73 Zbl0425.46046MR597017
  5. V.F.R. Jones, Index for subrings of rings, Group actions on rings (Brunswick, Maine, 1984) 43 (1985), 181-190, Amer. Math. Soc., Providence, R.I. Zbl0607.46033
  6. V.F.R. Jones, Planar algebras, I, (1999) 
  7. S. Popa, On a problem of R.V. Kadison on maximal abelian *-subalgebras in factors, Invent. Math. 65 (1981), 269-281 Zbl0481.46028MR641131
  8. S. Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), 427-445 Zbl0831.46069MR1334479
  9. S. Popa, The relative Dixmier property for inclusions of von Neumann algebras of finite index, Ann. Sci. École Norm. Sup. (4) 32 (1999), 743-767 Zbl0966.46036MR1717575
  10. S. Popa, On the relative Dixmier property for inclusions of C*-algebras, J. Funct. Anal. 171 (2000), 139-154 Zbl0953.46027MR1742862
  11. M. Takesaki, Conditional expectations in von Neumann algebras, J. Func. Anal. 9 (1972), 306-321 Zbl0245.46089MR303307

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.