Galois representations and -adic Bessel operators
Yves André[1]
- [1] Institut de Mathématiques, Équipe de Théorie des Nombres, 175 rue du Chevaleret, 75013 Paris (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 3, page 779-808
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Adolphson, S. Sperber, Twisted Kloosterman sums and p-adic Bessel functions, Amer. J. Math 106 (1984), 549-591 Zbl0552.12010MR745141
- F. Baldassarri, Differential modules and singular points of p-adic differential equations, Advances in Math 44 (1982), 155-179 Zbl0493.12030MR658539
- P. Berthelot, Cohomologie rigide et théorie de Dwork : le cas des sommes exponentielles, No 119-120 (1984), 17-49, S.M.F. Zbl0577.14013
- F. Beukers, Differential Galois theory, chap. 8 (1995), Springer-Verlag ed. Zbl0813.12001MR1221107
- N. Bourbaki, Algèbre commutative, chapitres I, VII (1985), Masson Zbl0547.13002
- G. Christol, B. Dwork, Modules différentiels sur des couronnes, Ann. Inst. Fourier, Grenoble 44 (1994), 663-701 Zbl0859.12004MR1303881
- G. Christol, Z. Mebkhout, Sur le théorème de l'indice des équations différentielles p-adiques II, Ann. of Maths 146 (1997), 345-410 Zbl0929.12003MR1477761
- G. Christol, Z. Mebkhout, Sur le théorème de l'indice des équations différentielles p-adiques III, Ann. of Maths 151 (2000), 385-457 Zbl1078.12500MR1765703
- H.S.M. Coxeter, Complex regular polytopes, (1991), Cambridge Univ. Press Zbl0732.51002MR1119304
- R. Crew, -isocrystals and -adic representations, Algebraic Geometry - Bowdoin 1985 XLVI (1987), 111-138 Zbl0639.14011
- R. Crew, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Ann. Scient. Éc. Norm. Sup 31 (1998), 717-763 Zbl0943.14008MR1664230
- R. Crew, Canonical extensions, irregularities, and the Swan conductor, Math. Ann. 316 (2000), 19-37 Zbl0969.14012MR1735077
- B. Dwork, Bessel functions as -adic functions of their argument, Duke Math. J 41 (1974), 711-738 Zbl0302.14008MR387281
- J.M. Fontaine, Représentations -adiques des corps locaux, Grothendieck Festschrift II 87 (1990), 249-309, Birkhäuser Zbl0743.11066
- W. Fulton, J. Harris, Representation theory, 129 (1991), Springer Zbl0744.22001MR1153249
- D. Husemöller, Elliptic curves, 111 (1987), Springer Zbl0605.14032MR868861
- O. Hyodo, A cohomological construction of Swan representations over the Witt ring II, Proc. Japan Acad 64A (1988), 350-351 Zbl0699.14026MR979242
- N. Katz, On the calculation of some differential Galois groups, Invent. Math 87 (1987), 13-61 Zbl0609.12025MR862711
- N. Katz, Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier, Grenoble 36 (1986), 69-106 Zbl0564.14013MR867916
- N. Katz, Gauss sums, Kloosterman sums, and monodromy groups, 116 (1988), Princeton Zbl0675.14004MR955052
- S. Matsuda, Local indices of -adic differential operators corresponding to Artin-Schreier-Witt coverings, Duke Math. J 77 (1995), 607-625 Zbl0849.12013MR1324636
- S. Matsuda, Katz correspondence for quasi-unipotent overconvergent isocrystals, (1997) Zbl1101.14021
- M. van der Put, Galois theory of differential equations, algebraic groups and Lie algebras, J. Symbolic Computation 28 (1999), 441-472 Zbl0997.12008MR1731933
- J.P. Serre, Sur la rationalité des représentations d'Artin, Ann. of Maths 72 (1960), 406-420 Zbl0202.32803MR171775
- J.P. Serre, Corps locaux, (1968), Hermann Zbl0137.02601MR354618
- N. Tsuzuki, The local index and the Swan conductor, Compos. Math 111 (1998), 245-288 Zbl0926.12004MR1617130
- N. Tsuzuki, Slope filtration of quasi-unipotent overconvergent F-isocrystals, Ann. Inst. Fourier, Grenoble 48 (1998), 379-412 Zbl0907.14007MR1625537
- N. Tsuzuki, Finite local monodromy of overconvergent unit-root F-isocrystal on a curve, Amer. J. Math 120 (1998), 1165-1190 Zbl0943.14007MR1657158
- M.F. Vignéras, Arithmétique des algèbres de quaternions, 800 (1980), Springer Zbl0422.12008MR580949
- E. Whittaker, G. Watson, A course of modern analysis, (1996), Cambridge Univ. Press Zbl0951.30002MR1424469