The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Représentations galoisiennes et opérateurs de Bessel p -adiques”

Une formule de Riemann-Hurwitz pour le groupe de Selmer d'une courbe elliptique

Alexis Michel (1993)

Annales de l'institut Fourier

Similarity:

Soit E une courbe elliptique avec multiplication complexe, définie sur un corps de nombres F . Soit p un nombre premier. En ajoutant certains points de p -torsion de E à F , on construit une p -extension F de F . On associe à F un groupe de Selmer. Pour une p -extension galoisienne de F , Wingberg a montré, sous les conjectures arithmétiques usuelles, un analogue de la formule de Riemann-Hurwitz pour le corang du groupe de Selmer en haut de la tour. Nous donnons une nouvelle preuve...

Sur la p -torsion de certains modules galoisiens

Thong Nguyen-Quang-Do (1986)

Annales de l'institut Fourier

Similarity:

Étant donné un corps de nombres K et un nombre premier p , soit 𝒯 K le sous-module de Z p -torsion du groupe de Galois de la p -extension abélienne p -ramifiée maximale de K . On se propose d’étudier la structure de module galoisien de 𝒯 K . Si K vérifie la conjecture de Leopoldt, 𝒯 K contient un sous-module formé des racines p -primaires de l’unité semi-locales quotientées par les racines p -primaires de l’unité globales, et le quotient de 𝒯 K par ce sous-module peut s’interpréter de deux façons : soit...