Local-to-global extensions of representations of fundamental groups

Nicholas M. Katz

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 4, page 69-106
  • ISSN: 0373-0956

Abstract

top
Let K be a field of characteristic p > 0 , C a proper, smooth, geometrically connected curve over K , and 0 and two K -rational points on C . We show that any representation of the local Galois group at extends to a representation of the fundamental group of C - { 0 , } which is tamely ramified at 0, provided either that K is separately closed or that C is P 1 . In the latter case, we show there exists a unique such extension, called “canonical”, with the property that the image of the geometric fundamental group has a unique p -Sylow subgroup. As an application, we give a global cohomological construcion of the Swan representation in equal characteristic.

How to cite

top

Katz, Nicholas M.. "Local-to-global extensions of representations of fundamental groups." Annales de l'institut Fourier 36.4 (1986): 69-106. <http://eudml.org/doc/74739>.

@article{Katz1986,
abstract = {Let $K$ be a field of characteristic $p&gt;0$, $C$ a proper, smooth, geometrically connected curve over $K$, and 0 and $\infty $ two $K$-rational points on $C$. We show that any representation of the local Galois group at $\infty $ extends to a representation of the fundamental group of $C-\lbrace 0,\infty \rbrace $ which is tamely ramified at 0, provided either that $K$ is separately closed or that $C$ is $\{\bf P\}^ 1$. In the latter case, we show there exists a unique such extension, called “canonical”, with the property that the image of the geometric fundamental group has a unique $p$-Sylow subgroup. As an application, we give a global cohomological construcion of the Swan representation in equal characteristic.},
author = {Katz, Nicholas M.},
journal = {Annales de l'institut Fourier},
keywords = {characteristic p; rational points; representation of local Galois group; fundamental group of curve; monodromy; Swan representation},
language = {eng},
number = {4},
pages = {69-106},
publisher = {Association des Annales de l'Institut Fourier},
title = {Local-to-global extensions of representations of fundamental groups},
url = {http://eudml.org/doc/74739},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Katz, Nicholas M.
TI - Local-to-global extensions of representations of fundamental groups
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 4
SP - 69
EP - 106
AB - Let $K$ be a field of characteristic $p&gt;0$, $C$ a proper, smooth, geometrically connected curve over $K$, and 0 and $\infty $ two $K$-rational points on $C$. We show that any representation of the local Galois group at $\infty $ extends to a representation of the fundamental group of $C-\lbrace 0,\infty \rbrace $ which is tamely ramified at 0, provided either that $K$ is separately closed or that $C$ is ${\bf P}^ 1$. In the latter case, we show there exists a unique such extension, called “canonical”, with the property that the image of the geometric fundamental group has a unique $p$-Sylow subgroup. As an application, we give a global cohomological construcion of the Swan representation in equal characteristic.
LA - eng
KW - characteristic p; rational points; representation of local Galois group; fundamental group of curve; monodromy; Swan representation
UR - http://eudml.org/doc/74739
ER -

References

top
  1. [Ha] D. HARBATER, Moduli of p-covers of curves, Comm. in Algebra, 8, n° 12 (1980), 1095-1122. Zbl0471.14011MR82f:14010
  2. [Ka] N. KATZ, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Annals of Math. Study, 113, to appear. Zbl0675.14004
  3. [Lau] G. LAUMON, Les constantes des équations fonctionnelles des fonctions L sur un corps global de caractéristique positive, C.R. Acad. Sc., Paris, t. 298, Série 1, n° 8 (1984), 181-184. Zbl0567.14016MR85j:11170
  4. [Le] A. H. M. LEVELT, Jordan decomposition of a class of singular differential operators, Arkiv for Math., 13.1 (1975), 1-27. Zbl0305.34008MR58 #17962
  5. [Ra] M. RAYNAUD, Caractéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes, Séminaire Bourbaki 1964*1965, n° 286, W.A. Benjamin, New York, 1966. Zbl0204.54301
  6. [Se-1] J.-P. SERRE, Corps Locaux, deuxième édition, Hermann, Paris 1968. 
  7. [Se-2] J.-P. SERRE, Représentations Linéaires des Groupes Finis, troisième édition corrigée, Hermann, Paris, 1978. Zbl0407.20003MR80f:20001
  8. [Sh] S. SHATZ, Profinite Groups, Arithmetic, and Geometry, Annals of Math. Study, 67, Princeton Univeristy Press, Princeton, 1972. Zbl0236.12002MR50 #279
  9. Treatises. 
  10. [E.G.A.] Éléments de Géométrie Algébrique, Pub. Math. I.H.E.S., 4(I) ; 8(II) ; 11, 17(III) ; 20, 24, 28, 32(IV). 
  11. [S.G.A.] Séminaire de Géométrie Algébrique, Springer Lecture Notes in Mathematics, 224 (SGA 1) ; 151-152-153 (SGA 3) ; 269-270-305 (SGA 4) ; 569 (SGA 4 1/2) ; 288 (SGA 7, I) ; 340 (SGA 7, II). 

Citations in EuDML Documents

top
  1. Nobuo Tsuzuki, Slope filtration of quasi-unipotent overconvergent F -isocrystals
  2. Etienne Fouvry, Henryk Iwaniec, Nicholas Katz, The divisor function over arithmetic progressions
  3. Ted Chinburg, Robert Guralnick, David Harbater, The local lifting problem for actions of finite groups on curves
  4. Michel Raynaud, Spécialisation des revêtements en caractéristique p &gt; 0
  5. Yves André, Représentations galoisiennes et opérateurs de Bessel p -adiques
  6. Nicholas M. Katz, Travaux de Laumon
  7. Andrew Obus, Fields of moduli of three-point G -covers with cyclic p -Sylow, II

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.