Local-to-global extensions of representations of fundamental groups
Annales de l'institut Fourier (1986)
- Volume: 36, Issue: 4, page 69-106
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKatz, Nicholas M.. "Local-to-global extensions of representations of fundamental groups." Annales de l'institut Fourier 36.4 (1986): 69-106. <http://eudml.org/doc/74739>.
@article{Katz1986,
abstract = {Let $K$ be a field of characteristic $p>0$, $C$ a proper, smooth, geometrically connected curve over $K$, and 0 and $\infty $ two $K$-rational points on $C$. We show that any representation of the local Galois group at $\infty $ extends to a representation of the fundamental group of $C-\lbrace 0,\infty \rbrace $ which is tamely ramified at 0, provided either that $K$ is separately closed or that $C$ is $\{\bf P\}^ 1$. In the latter case, we show there exists a unique such extension, called “canonical”, with the property that the image of the geometric fundamental group has a unique $p$-Sylow subgroup. As an application, we give a global cohomological construcion of the Swan representation in equal characteristic.},
author = {Katz, Nicholas M.},
journal = {Annales de l'institut Fourier},
keywords = {characteristic p; rational points; representation of local Galois group; fundamental group of curve; monodromy; Swan representation},
language = {eng},
number = {4},
pages = {69-106},
publisher = {Association des Annales de l'Institut Fourier},
title = {Local-to-global extensions of representations of fundamental groups},
url = {http://eudml.org/doc/74739},
volume = {36},
year = {1986},
}
TY - JOUR
AU - Katz, Nicholas M.
TI - Local-to-global extensions of representations of fundamental groups
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 4
SP - 69
EP - 106
AB - Let $K$ be a field of characteristic $p>0$, $C$ a proper, smooth, geometrically connected curve over $K$, and 0 and $\infty $ two $K$-rational points on $C$. We show that any representation of the local Galois group at $\infty $ extends to a representation of the fundamental group of $C-\lbrace 0,\infty \rbrace $ which is tamely ramified at 0, provided either that $K$ is separately closed or that $C$ is ${\bf P}^ 1$. In the latter case, we show there exists a unique such extension, called “canonical”, with the property that the image of the geometric fundamental group has a unique $p$-Sylow subgroup. As an application, we give a global cohomological construcion of the Swan representation in equal characteristic.
LA - eng
KW - characteristic p; rational points; representation of local Galois group; fundamental group of curve; monodromy; Swan representation
UR - http://eudml.org/doc/74739
ER -
References
top- [Ha] D. HARBATER, Moduli of p-covers of curves, Comm. in Algebra, 8, n° 12 (1980), 1095-1122. Zbl0471.14011MR82f:14010
- [Ka] N. KATZ, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Annals of Math. Study, 113, to appear. Zbl0675.14004
- [Lau] G. LAUMON, Les constantes des équations fonctionnelles des fonctions L sur un corps global de caractéristique positive, C.R. Acad. Sc., Paris, t. 298, Série 1, n° 8 (1984), 181-184. Zbl0567.14016MR85j:11170
- [Le] A. H. M. LEVELT, Jordan decomposition of a class of singular differential operators, Arkiv for Math., 13.1 (1975), 1-27. Zbl0305.34008MR58 #17962
- [Ra] M. RAYNAUD, Caractéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes, Séminaire Bourbaki 1964*1965, n° 286, W.A. Benjamin, New York, 1966. Zbl0204.54301
- [Se-1] J.-P. SERRE, Corps Locaux, deuxième édition, Hermann, Paris 1968.
- [Se-2] J.-P. SERRE, Représentations Linéaires des Groupes Finis, troisième édition corrigée, Hermann, Paris, 1978. Zbl0407.20003MR80f:20001
- [Sh] S. SHATZ, Profinite Groups, Arithmetic, and Geometry, Annals of Math. Study, 67, Princeton Univeristy Press, Princeton, 1972. Zbl0236.12002MR50 #279
- Treatises.
- [E.G.A.] Éléments de Géométrie Algébrique, Pub. Math. I.H.E.S., 4(I) ; 8(II) ; 11, 17(III) ; 20, 24, 28, 32(IV).
- [S.G.A.] Séminaire de Géométrie Algébrique, Springer Lecture Notes in Mathematics, 224 (SGA 1) ; 151-152-153 (SGA 3) ; 269-270-305 (SGA 4) ; 569 (SGA 4 1/2) ; 288 (SGA 7, I) ; 340 (SGA 7, II).
Citations in EuDML Documents
top- Nobuo Tsuzuki, Slope filtration of quasi-unipotent overconvergent -isocrystals
- Etienne Fouvry, Henryk Iwaniec, Nicholas Katz, The divisor function over arithmetic progressions
- Ted Chinburg, Robert Guralnick, David Harbater, The local lifting problem for actions of finite groups on curves
- Michel Raynaud, Spécialisation des revêtements en caractéristique
- Yves André, Représentations galoisiennes et opérateurs de Bessel -adiques
- Nicholas M. Katz, Travaux de Laumon
- Andrew Obus, Fields of moduli of three-point -covers with cyclic -Sylow, II
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.