Combinatoire du billard dans un polyèdre
- [1] Fédération de recherches des unités de mathématiques de Marseille Laboratoire d’Analyse Topologie et Probabilités - UMR 6632 Avenue Escadrille Normandie Niemen 13397 Marseille cedex 20 (France)
Séminaire de théorie spectrale et géométrie (2006-2007)
- Volume: 25, page 1-15
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Arnoux, C. Mauduit, I. Shiokawa, J. Tamura, Complexity of sequences defined by billiard in the cube, Bull. Soc. Math. France 122 (1994), 1-12 Zbl0791.58034MR1259106
- Yu. Baryshnikov, Complexity of trajectories in rectangular billiards, Comm. Math. Phys. 174 (1995), 43-56 Zbl0839.11006MR1372799
- N. Bedaride, Billiard complexity in rational polyhedra, Regul. Chaotic Dyn. 8 (2003), 97-104 Zbl1023.37024MR1963971
- N. Bedaride, Classification of cubic billiard trajectories, (2007) Zbl1200.37034
- N. Bedaride, Entropy of polyhedral billiard, (2007) Zbl1200.37034MR2318275
- N. Bedaride, P. Hubert, Billiard complexity in the cube, (2007) Zbl1138.37017
- J. Berstel, M. Pocchiola, A geometric proof of the enumeration formula for Sturmian words, Internat. J. Algebra Comput. 3 (1993), 349-355 Zbl0802.68099MR1240390
- J. Buzzi, Piecewise isometries have zero topological entropy, Ergodic Theory Dynam. Systems 21 (2001), 1371-1377 Zbl0993.37012MR1855837
- J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 67-88 Zbl0921.68065MR1440670
- J. Cassaigne, P. Hubert, S. Troubetzkoy, Complexity and growth for polygonal billiards, Ann. Inst. Fourier (Grenoble) 52 (2002), 835-847 Zbl1115.37312MR1907389
- Sébastien Ferenczi, Charles Holton, Luca Q. Zamboni, Structure of three-interval exchange transformations III : ergodic and spectral properties, J. Anal. Math. 93 (2004), 103-138 Zbl1094.37005MR2110326
- Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, 1794 (2002), Springer-Verlag, Berlin Zbl1014.11015MR1970385
- G. Galʼperin, T. Krüger, S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys. 169 (1995), 463-473 Zbl0924.58043MR1328732
- Arek Goetz, Guillaume Poggiaspalla, Rotations by , Nonlinearity 17 (2004), 1787-1802 Zbl1066.37028MR2086151
- E. Gutkin, N. Haydn, Topological entropy of polygon exchange transformations and polygonal billiards, Ergodic Theory Dynam. Systems 17 (1997), 849-867 Zbl0945.37005MR1468104
- G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, (1979), The Clarendon Press Oxford University Press, New York Zbl0020.29201MR568909
- P. Hubert, Complexité de suites définies par des billards rationnels, Bull. Soc. Math. France 123 (1995), 257-270 Zbl0836.58013MR1340290
- A. Katok, The growth rate for the number of singular and periodic orbits for a polygonal billiard, Comm. Math. Phys. 111 (1987), 151-160 Zbl0631.58020MR896765
- E. P. Lipatov, A classification of binary collections and properties of homogeneity classes, Problemy Kibernet. (1982), 67-84 Zbl0555.94007MR694826
- F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), 71-84 Zbl0728.68093MR1112109
- M. Morse, G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42 Zbl0022.34003MR745
- Gérard Rauzy, Échanges d’intervalles et transformations induites, Acta Arith. 34 (1979), 315-328 Zbl0414.28018
- Yu. V. Tarannikov, On the number of ordered pairs of -balanced sets of length , Diskret. Mat. 7 (1995), 146-156 Zbl0854.15001MR1361501
- S. Troubetzkoy, Complexity lower bounds for polygonal billiards, Chaos 8 (1998), 242-244 Zbl0986.37030MR1609769