The Mumford-Tate group of 1-motives
- [1] Université Louis Pasteur, UFR de Mathématiques et Informatique, 7 rue René Descartes, 67084 Strasbourg Cedex (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 4, page 1041-1059
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBertolin, Cristiana. "The Mumford-Tate group of 1-motives." Annales de l’institut Fourier 52.4 (2002): 1041-1059. <http://eudml.org/doc/116002>.
@article{Bertolin2002,
abstract = {In this paper we study the structure and the degeneracies of the Mumford-Tate group
$MT(M)$ of a 1-motive $M$ defined over $\{\mathbb \{C\}\}$. This group is an algebraic $\{\mathbb \{Q\}\}$-
group acting on the Hodge realization of $M$ and endowed with an increasing filtration
$W_\bullet $. We prove that the unipotent radical of $MT(M)$, which is $W_\{-1\}(MT(M))$,
injects into a “generalized” Heisenberg group. We then explain how to reduce to the study
of the Mumford-Tate group of a direct sum of 1-motives whose torus’character group and
whose lattice are both of rank 1. Next we classify and we study the degeneracies of
$MT(M)$, i.e., those phenomena which imply the decrement of the dimension of $MT(M)$.},
affiliation = {Université Louis Pasteur, UFR de Mathématiques et Informatique, 7 rue René Descartes, 67084 Strasbourg Cedex (France)},
author = {Bertolin, Cristiana},
journal = {Annales de l’institut Fourier},
keywords = {1-motives; Mumford-Tate group; degeneracies; Poincaré biextension; Heisenberg group},
language = {eng},
number = {4},
pages = {1041-1059},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Mumford-Tate group of 1-motives},
url = {http://eudml.org/doc/116002},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Bertolin, Cristiana
TI - The Mumford-Tate group of 1-motives
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1041
EP - 1059
AB - In this paper we study the structure and the degeneracies of the Mumford-Tate group
$MT(M)$ of a 1-motive $M$ defined over ${\mathbb {C}}$. This group is an algebraic ${\mathbb {Q}}$-
group acting on the Hodge realization of $M$ and endowed with an increasing filtration
$W_\bullet $. We prove that the unipotent radical of $MT(M)$, which is $W_{-1}(MT(M))$,
injects into a “generalized” Heisenberg group. We then explain how to reduce to the study
of the Mumford-Tate group of a direct sum of 1-motives whose torus’character group and
whose lattice are both of rank 1. Next we classify and we study the degeneracies of
$MT(M)$, i.e., those phenomena which imply the decrement of the dimension of $MT(M)$.
LA - eng
KW - 1-motives; Mumford-Tate group; degeneracies; Poincaré biextension; Heisenberg group
UR - http://eudml.org/doc/116002
ER -
References
top- Y. André, Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compos. Math 82 (1992) Zbl0770.14003MR1154159
- C. Bertolin, Périodes de 1-motifs et transcendance Zbl1067.11041MR1942957
- D. Bertrand, 1-motifs et relations d'orthogonalité dans les groupes de Mordell-Weil, Problèmes Diophantiens 9293 108 (1996), Publ. Math. Univ. Paris VI
- D. Bertrand, Relative splitting of one-motives, Number Theory (Tiruchirapalli, 1996) 210 (1996), Amer. Math. Soc., Providence, RI Zbl1043.11054
- L. Breen, Biextensions alternées, Compos. Math. 63 (1987) Zbl0632.14036MR906381
- J.-L. Brylinski, 1-motifs et formes automorphes (théorie arithmétique des domaines de Siegel)}, Publ. Math. Univ. Paris VII 15 (1983) Zbl0565.14001MR723182
- P. Deligne, Théorie de Hodge III, Pub. Math. de l'I.H.E.S 44 (1975) Zbl0237.14003MR498552
- P. Deligne, Hodge cycles on abelian varieties, Hodge cycles, motives and Shimura varieties, 900 (1982), Springer L.N. Zbl0537.14006
- P. Deligne, Letter to the author, (2001)
- P. Deligne, J.-S. Milne, Tannakian categories, Hodge cycles, motives and Shimura varieties 900 (1982), Springer Zbl0477.14004
- O. Jacquinot, K. Ribet, Deficient points on extensions of abelian varieties by , J. Number Th. 25 (1987), 133-151 Zbl0667.14021MR873872
- H. Lange, C. Birkenhake, Complex abelian varieties, 302 (1992), Springer-Verlag Zbl0779.14012MR1217487
- N. Saavedra, Rivano, Catégories tannakiennes, 265 (1972), Springer Zbl0241.14008MR338002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.