The Mumford-Tate group of 1-motives

Cristiana Bertolin[1]

  • [1] Université Louis Pasteur, UFR de Mathématiques et Informatique, 7 rue René Descartes, 67084 Strasbourg Cedex (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 4, page 1041-1059
  • ISSN: 0373-0956

Abstract

top
In this paper we study the structure and the degeneracies of the Mumford-Tate group M T ( M ) of a 1-motive M defined over . This group is an algebraic - group acting on the Hodge realization of M and endowed with an increasing filtration W . We prove that the unipotent radical of M T ( M ) , which is W - 1 ( M T ( M ) ) , injects into a “generalized” Heisenberg group. We then explain how to reduce to the study of the Mumford-Tate group of a direct sum of 1-motives whose torus’character group and whose lattice are both of rank 1. Next we classify and we study the degeneracies of M T ( M ) , i.e., those phenomena which imply the decrement of the dimension of M T ( M ) .

How to cite

top

Bertolin, Cristiana. "The Mumford-Tate group of 1-motives." Annales de l’institut Fourier 52.4 (2002): 1041-1059. <http://eudml.org/doc/116002>.

@article{Bertolin2002,
abstract = {In this paper we study the structure and the degeneracies of the Mumford-Tate group $MT(M)$ of a 1-motive $M$ defined over $\{\mathbb \{C\}\}$. This group is an algebraic $\{\mathbb \{Q\}\}$- group acting on the Hodge realization of $M$ and endowed with an increasing filtration $W_\bullet $. We prove that the unipotent radical of $MT(M)$, which is $W_\{-1\}(MT(M))$, injects into a “generalized” Heisenberg group. We then explain how to reduce to the study of the Mumford-Tate group of a direct sum of 1-motives whose torus’character group and whose lattice are both of rank 1. Next we classify and we study the degeneracies of $MT(M)$, i.e., those phenomena which imply the decrement of the dimension of $MT(M)$.},
affiliation = {Université Louis Pasteur, UFR de Mathématiques et Informatique, 7 rue René Descartes, 67084 Strasbourg Cedex (France)},
author = {Bertolin, Cristiana},
journal = {Annales de l’institut Fourier},
keywords = {1-motives; Mumford-Tate group; degeneracies; Poincaré biextension; Heisenberg group},
language = {eng},
number = {4},
pages = {1041-1059},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Mumford-Tate group of 1-motives},
url = {http://eudml.org/doc/116002},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Bertolin, Cristiana
TI - The Mumford-Tate group of 1-motives
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1041
EP - 1059
AB - In this paper we study the structure and the degeneracies of the Mumford-Tate group $MT(M)$ of a 1-motive $M$ defined over ${\mathbb {C}}$. This group is an algebraic ${\mathbb {Q}}$- group acting on the Hodge realization of $M$ and endowed with an increasing filtration $W_\bullet $. We prove that the unipotent radical of $MT(M)$, which is $W_{-1}(MT(M))$, injects into a “generalized” Heisenberg group. We then explain how to reduce to the study of the Mumford-Tate group of a direct sum of 1-motives whose torus’character group and whose lattice are both of rank 1. Next we classify and we study the degeneracies of $MT(M)$, i.e., those phenomena which imply the decrement of the dimension of $MT(M)$.
LA - eng
KW - 1-motives; Mumford-Tate group; degeneracies; Poincaré biextension; Heisenberg group
UR - http://eudml.org/doc/116002
ER -

References

top
  1. Y. André, Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compos. Math 82 (1992) Zbl0770.14003MR1154159
  2. C. Bertolin, Périodes de 1-motifs et transcendance Zbl1067.11041MR1942957
  3. D. Bertrand, 1-motifs et relations d'orthogonalité dans les groupes de Mordell-Weil, Problèmes Diophantiens 9293 108 (1996), Publ. Math. Univ. Paris VI 
  4. D. Bertrand, Relative splitting of one-motives, Number Theory (Tiruchirapalli, 1996) 210 (1996), Amer. Math. Soc., Providence, RI Zbl1043.11054
  5. L. Breen, Biextensions alternées, Compos. Math. 63 (1987) Zbl0632.14036MR906381
  6. J.-L. Brylinski, 1-motifs et formes automorphes (théorie arithmétique des domaines de Siegel)}, Publ. Math. Univ. Paris VII 15 (1983) Zbl0565.14001MR723182
  7. P. Deligne, Théorie de Hodge III, Pub. Math. de l'I.H.E.S 44 (1975) Zbl0237.14003MR498552
  8. P. Deligne, Hodge cycles on abelian varieties, Hodge cycles, motives and Shimura varieties, 900 (1982), Springer L.N. Zbl0537.14006
  9. P. Deligne, Letter to the author, (2001) 
  10. P. Deligne, J.-S. Milne, Tannakian categories, Hodge cycles, motives and Shimura varieties 900 (1982), Springer Zbl0477.14004
  11. O. Jacquinot, K. Ribet, Deficient points on extensions of abelian varieties by 𝔾 m , J. Number Th. 25 (1987), 133-151 Zbl0667.14021MR873872
  12. H. Lange, C. Birkenhake, Complex abelian varieties, 302 (1992), Springer-Verlag Zbl0779.14012MR1217487
  13. N. Saavedra, Rivano, Catégories tannakiennes, 265 (1972), Springer Zbl0241.14008MR338002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.