Differential Galois theories and transcendence
- [1] Université Paris VI Institut de Mathématiques Case 247 4, place Jussieu, Tour 45-46 75252 Paris Cedex 5 (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 7, page 2773-2803
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBertrand, Daniel. "Théories de Galois différentielles et transcendance." Annales de l’institut Fourier 59.7 (2009): 2773-2803. <http://eudml.org/doc/10471>.
@article{Bertrand2009,
abstract = {On décrit des preuves galoisiennes des versions logarithmique et exponentielle de la conjecture de Schanuel, pour les variétés abéliennes sur un corps de fonctions.},
affiliation = {Université Paris VI Institut de Mathématiques Case 247 4, place Jussieu, Tour 45-46 75252 Paris Cedex 5 (France)},
author = {Bertrand, Daniel},
journal = {Annales de l’institut Fourier},
keywords = {Differential Galois theory; algebraic independence; abelian varieties; Galois cohomology; Gauss-Manin connections; logarithmic derivatives},
language = {fre},
number = {7},
pages = {2773-2803},
publisher = {Association des Annales de l’institut Fourier},
title = {Théories de Galois différentielles et transcendance},
url = {http://eudml.org/doc/10471},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Bertrand, Daniel
TI - Théories de Galois différentielles et transcendance
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 7
SP - 2773
EP - 2803
AB - On décrit des preuves galoisiennes des versions logarithmique et exponentielle de la conjecture de Schanuel, pour les variétés abéliennes sur un corps de fonctions.
LA - fre
KW - Differential Galois theory; algebraic independence; abelian varieties; Galois cohomology; Gauss-Manin connections; logarithmic derivatives
UR - http://eudml.org/doc/10471
ER -
References
top- Y. André, Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compo Math. 82 (1992), 1-24 Zbl0770.14003MR1154159
- Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), (2004), Société Mathématique de France Zbl1060.14001MR2115000
- J. Ax, On Schanuel’s conjecture, Annals of Maths 93 (1971), 252-268 Zbl0232.10026
- M. Bays, J. Kirby, A. Wilkie, A Schanuel property for exponentially transcendental powers Zbl1223.11093
- C. Bertolin, Le groupe de Mumford-Tate des 1-motifs, Ann. Inst. Fourier 52 (2002), 1041-1059 Zbl1001.14017MR1926672
- D. Bertrand, Extensions de -modules et groupes de Galois différentiels, -adic analysis (Trento, 1989) 1454 (1990), 125-141, Springer, Berlin Zbl0732.13008MR1094849
- D. Bertrand, Manin’s theorem of the kernel : a remark on a paper of C-L. Chai, (2008)
- D. Bertrand, Schanuel’s conjecture for non-isoconstant elliptic curves over function fields, Model theory with applications to algebra and analysis. Vol. 1 349 (2008), 41-62, Cambridge Univ. Press, Cambridge Zbl1215.14050MR2441374
- D. Bertrand, A. Pillay, A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields Zbl1276.12003
- A. Buium, P. Cassidy, Differential algebraic geometry and differential algebraic groups, Selected works of E. Kolchin (1999), 567-636, AMS
- Alexandru Buium, Differential algebraic groups of finite dimension, (1992), Lecture Notes in Mathematics. 1506. Berlin etc. : Springer-Verlag. xv, 145 p. Zbl0756.14028MR1176753
- S. Cantat-F. Loray, Holomorphic dynamics, Painlevé VI equation and Character Varieties Zbl1204.34123
- Guy Casale, The Galois groupoid of Picard-Painlevé VI equation, Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies (2007), 15-20, Res. Inst. Math. Sci. (RIMS), Kyoto Zbl1219.34113MR2310018
- C.-L. Chai, A note on Manin’s theorem of the kernel, Amer. J. Maths 113 (1991), 387-389 Zbl0759.14017MR1109343
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), 5-57 Zbl0219.14007MR498551
- Pierre Deligne, Théorie de Hodge irrégulière ; I (1984)) ; II (2006), Correspondance Deligne-Malgrange-Ramis 5 (2007), Société Mathématique de France
- C. Hardouin, M. Singer, Differential Galois theory of linear difference equations, Math. Ann. 342 (2008), 333-377 Zbl1163.12002MR2425146
- Marco Hien, Céline Roucairol, Integral representations for solutions of exponential Gauss-Manin systems, Bull. Soc. Math. France 136 (2008), 505-532 Zbl1171.32019MR2443034
- E. R. Kolchin, Algebraic groups and algebraic dependence, Amer. J. Math. 90 (1968), 1151-1164 Zbl0169.36701MR240106
- Piotr Kowalski, A note on a theorem of Ax, Ann. Pure Appl. Logic 156 (2008), 96-109 Zbl1155.03019MR2474444
- Bernard Malgrange, Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2 38 (2001), 465-501, Enseignement Math., Geneva Zbl1033.32020MR1929336
- David Marker, Anand Pillay, Differential Galois theory. III. Some inverse problems, Illinois J. Math. 41 (1997), 453-461 Zbl0927.03065MR1458184
- Anand Pillay, Differential Galois theory. I, Illinois J. Math. 42 (1998), 678-699 Zbl0916.03028MR1649893
- Anand Pillay, Algebraic -groups and differential Galois theory, Pacific J. Math. 216 (2004), 343-360 Zbl1093.12004MR2094550
- Jean-Pierre Serre, Cohomologie galoisienne, 5 (1994), Springer-Verlag, Berlin Zbl0812.12002MR1324577
- Hiroshi Umemura, Sur l’équivalence des théories de Galois différentielles générales, C. R. Math. Acad. Sci. Paris 346 (2008), 1155-1158 Zbl1204.12009MR2464256
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.