On the structure of certain C * -algebra associated to lattices of PSL 2 ( )

François Pierrot[1]

  • [1] École Normale Supérieure, DMA, 45 rue d'Ulm 75005 Paris (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 5, page 1287-1299
  • ISSN: 0373-0956

Abstract

top
By using the infinitesimal structure of the unitary irreducible representations of PSL 2 ( ) , we give a complete description of certain C * -algebras associated to lattices in PSL 2 ( ) ; this gives answers to some questions of Bekka–de La Harpe–Valette.

How to cite

top

Pierrot, François. "Structure de certaines $C^*$-algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$." Annales de l’institut Fourier 52.5 (2002): 1287-1299. <http://eudml.org/doc/116012>.

@article{Pierrot2002,
abstract = {En utilisant la structure infinitésimale des représentations unitaires irréductibles de $\{\rm PSL\}_2(\{\mathbb \{R\}\})$, nous donnons une description complète de certaines $C^*$- algèbres associées aux réseaux de $\{\rm PSL\}_2(\{\mathbb \{R\}\})$, répondant ainsi à certaines questions de Bekka–de La Harpe–Valette.},
affiliation = {École Normale Supérieure, DMA, 45 rue d'Ulm 75005 Paris (France)},
author = {Pierrot, François},
journal = {Annales de l’institut Fourier},
keywords = {$C^*$-algebras; unitary representations; $(g,k)$-modules; lattices},
language = {fre},
number = {5},
pages = {1287-1299},
publisher = {Association des Annales de l'Institut Fourier},
title = {Structure de certaines $C^*$-algèbres associées aux réseaux de $\{\rm PSL\}_2(\{\mathbb \{R\}\})$},
url = {http://eudml.org/doc/116012},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Pierrot, François
TI - Structure de certaines $C^*$-algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1287
EP - 1299
AB - En utilisant la structure infinitésimale des représentations unitaires irréductibles de ${\rm PSL}_2({\mathbb {R}})$, nous donnons une description complète de certaines $C^*$- algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$, répondant ainsi à certaines questions de Bekka–de La Harpe–Valette.
LA - fre
KW - $C^*$-algebras; unitary representations; $(g,k)$-modules; lattices
UR - http://eudml.org/doc/116012
ER -

References

top
  1. H. Araki, Expansionals in Banach Algebra, Ann. Sci. de l'École Normale Supérieure, 4e série 6 (1973), 67-84 Zbl0257.46054MR435842
  2. S. Baaj, Multiplicateurs non bornés, (1980) 
  3. M. Bekka, Restrictions of unitary representations to lattices and associated C * -algebras, JFA 143 (1997) Zbl0883.22006MR1428115
  4. M. Bekka, M. Cowling, P. de la Harpe, Some groups whose reduced C * -algebra is simple, Publ. Math. IHES 80 (1994), 117-134 Zbl0827.22001MR1320606
  5. M. Bekka, P. de la Harpe, Représentations d'un groupe faiblement équivalentes à la représentation régulière, Bull. Soc. Math. France 122 (1994), 333-342 Zbl0824.22011MR1294459
  6. M. Bekka, A. Valette, Lattices in semi-simple Lie groups and multipliers of group C * -algebras, 232 (1995), 67-79, SMF Zbl0851.22006
  7. M. Cowling, T. Steger, The irreducibility of restrictions of unitary representations to lattices, J. Reine. Angew. Math 420 (1991), 85-98 Zbl0760.22014MR1124567
  8. J. Dixmier, Les C * -algèbres et leurs représentations, (1964), Gauthiers-Villars Zbl0152.32902MR171173
  9. G. Kasparov, Lorentz groups: K -theory of unitary representations and crossed products, Soviet. Math. Dokl 29 (1984) Zbl0584.22004MR741223
  10. S. Lang, S L 2 ( ) , (1975), Addison-Wesley MR430163
  11. E.C. Lance, Hilbert C * -modules, a toolkit for operator algebraists, London Math. Soc. Lect. Notes Series 210 Zbl0822.46080MR1325694
  12. G.A. Margulis, Discrete subgroups of semisimple Lie groups, (1989), Springer Verlag Zbl0732.22008MR1090825
  13. D. Milicic, Topological representations of the group C * -algebra of S L 2 ( ) , Glas. Mat 6 (26) (1971), 231-246 Zbl0229.22010MR308795
  14. F. Pierrot, (2000) 
  15. M.A. Rieffel, Induced representations of C * -algebras, Adv. in Math 13 (1974), 176-257 Zbl0284.46040MR353003
  16. A. Valette, Notes on the structure and the K-theory of the C * -algebra associated to S L 2 ( } } R ) , Bull. Soc. Math. Belg. Sér. B XXXVI (1984), 29-56 Zbl0545.22003MR885552
  17. D. Voiculescu, A non-commutative Weyl-Von Neumann theorem, Rev. R. Maths. Pures Appl 21 (1976), 97-113 Zbl0335.46039MR415338
  18. N. Wallach, On the Selberg trace formula in the case of compact quotient, Bull. AMS vol 62 (1976), 171-195 Zbl0351.22008MR404533
  19. N. Wallach, Real reductive groups I, (1988), Academic Press Zbl0666.22002MR929683
  20. S. L. Woronowicz, Unbounded elements affiliated with C * -algebras and noncompact quantum groups, Comm. Math. Phys 136 (1991), 399-432 Zbl0743.46080MR1096123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.