On the structure of certain -algebra associated to lattices of
- [1] École Normale Supérieure, DMA, 45 rue d'Ulm 75005 Paris (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 5, page 1287-1299
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPierrot, François. "Structure de certaines $C^*$-algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$." Annales de l’institut Fourier 52.5 (2002): 1287-1299. <http://eudml.org/doc/116012>.
@article{Pierrot2002,
abstract = {En utilisant la structure infinitésimale des représentations unitaires irréductibles de
$\{\rm PSL\}_2(\{\mathbb \{R\}\})$, nous donnons une description complète de certaines $C^*$-
algèbres associées aux réseaux de $\{\rm PSL\}_2(\{\mathbb \{R\}\})$, répondant ainsi à certaines
questions de Bekka–de La Harpe–Valette.},
affiliation = {École Normale Supérieure, DMA, 45 rue d'Ulm 75005 Paris (France)},
author = {Pierrot, François},
journal = {Annales de l’institut Fourier},
keywords = {$C^*$-algebras; unitary representations; $(g,k)$-modules; lattices},
language = {fre},
number = {5},
pages = {1287-1299},
publisher = {Association des Annales de l'Institut Fourier},
title = {Structure de certaines $C^*$-algèbres associées aux réseaux de $\{\rm PSL\}_2(\{\mathbb \{R\}\})$},
url = {http://eudml.org/doc/116012},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Pierrot, François
TI - Structure de certaines $C^*$-algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1287
EP - 1299
AB - En utilisant la structure infinitésimale des représentations unitaires irréductibles de
${\rm PSL}_2({\mathbb {R}})$, nous donnons une description complète de certaines $C^*$-
algèbres associées aux réseaux de ${\rm PSL}_2({\mathbb {R}})$, répondant ainsi à certaines
questions de Bekka–de La Harpe–Valette.
LA - fre
KW - $C^*$-algebras; unitary representations; $(g,k)$-modules; lattices
UR - http://eudml.org/doc/116012
ER -
References
top- H. Araki, Expansionals in Banach Algebra, Ann. Sci. de l'École Normale Supérieure, 4e série 6 (1973), 67-84 Zbl0257.46054MR435842
- S. Baaj, Multiplicateurs non bornés, (1980)
- M. Bekka, Restrictions of unitary representations to lattices and associated -algebras, JFA 143 (1997) Zbl0883.22006MR1428115
- M. Bekka, M. Cowling, P. de la Harpe, Some groups whose reduced -algebra is simple, Publ. Math. IHES 80 (1994), 117-134 Zbl0827.22001MR1320606
- M. Bekka, P. de la Harpe, Représentations d'un groupe faiblement équivalentes à la représentation régulière, Bull. Soc. Math. France 122 (1994), 333-342 Zbl0824.22011MR1294459
- M. Bekka, A. Valette, Lattices in semi-simple Lie groups and multipliers of group -algebras, 232 (1995), 67-79, SMF Zbl0851.22006
- M. Cowling, T. Steger, The irreducibility of restrictions of unitary representations to lattices, J. Reine. Angew. Math 420 (1991), 85-98 Zbl0760.22014MR1124567
- J. Dixmier, Les -algèbres et leurs représentations, (1964), Gauthiers-Villars Zbl0152.32902MR171173
- G. Kasparov, Lorentz groups: -theory of unitary representations and crossed products, Soviet. Math. Dokl 29 (1984) Zbl0584.22004MR741223
- S. Lang, , (1975), Addison-Wesley MR430163
- E.C. Lance, Hilbert -modules, a toolkit for operator algebraists, London Math. Soc. Lect. Notes Series 210 Zbl0822.46080MR1325694
- G.A. Margulis, Discrete subgroups of semisimple Lie groups, (1989), Springer Verlag Zbl0732.22008MR1090825
- D. Milicic, Topological representations of the group -algebra of , Glas. Mat 6 (26) (1971), 231-246 Zbl0229.22010MR308795
- F. Pierrot, (2000)
- M.A. Rieffel, Induced representations of -algebras, Adv. in Math 13 (1974), 176-257 Zbl0284.46040MR353003
- A. Valette, Notes on the structure and the K-theory of the -algebra associated to , Bull. Soc. Math. Belg. Sér. B XXXVI (1984), 29-56 Zbl0545.22003MR885552
- D. Voiculescu, A non-commutative Weyl-Von Neumann theorem, Rev. R. Maths. Pures Appl 21 (1976), 97-113 Zbl0335.46039MR415338
- N. Wallach, On the Selberg trace formula in the case of compact quotient, Bull. AMS vol 62 (1976), 171-195 Zbl0351.22008MR404533
- N. Wallach, Real reductive groups I, (1988), Academic Press Zbl0666.22002MR929683
- S. L. Woronowicz, Unbounded elements affiliated with -algebras and noncompact quantum groups, Comm. Math. Phys 136 (1991), 399-432 Zbl0743.46080MR1096123
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.