-cohomology manifold with no -resolution
W. Jakobsche (1991)
Fundamenta Mathematicae
Similarity:
W. Jakobsche (1991)
Fundamenta Mathematicae
Similarity:
C. Denson Hill, M. Nacinovich (1995)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Imre Patyi (2004)
Annales de l’institut Fourier
Similarity:
Let be a Banach space with a countable unconditional basis (e.g., ), an open set and complex-valued holomorphic functions on , such that the Fréchet differentials are linearly independant over at each . We suppose that is a complete intersection and we consider a holomorphic Banach vector bundle . If (resp.) denote the ideal of germs of holomorphic functions on that vanish on (resp. the sheaf of germs of holomorphic sections of ), then the sheaf cohomology groups...
Michael Falk, Vadim Schechtman, Alexander Varchenko (2014)
Journal de l’École polytechnique — Mathématiques
Similarity:
We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
A. Jankowski
Similarity:
Contents0. Introduction............................................................................................................................................. 51. Preliminaries.......................................................................................................................................... 62. Generalized cohomology theories with a coefficient group .............................................. 83. Cohomology theory BP* ( , )........................................................................................................
Július Korbaš, Juraj Lörinc (2003)
Fundamenta Mathematicae
Similarity:
Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds , q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any , q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.
Antonio Cassa (1990)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Carlo Alberto Cremonini (2022)
Archivum Mathematicum
Similarity:
This note is based on a short talk presented at the “42nd Winter School Geometry and Physics” held in Srni, Czech Republic, January 15th–22nd 2022. We review the notion of Lie superalgebra cohomology and extend it to different form complexes, typical of the superalgebraic setting. In particular, we introduce pseudoforms as infinite-dimensional modules related to sub-superalgebras. We then show how to extend the Koszul-Hochschild-Serre spectral sequence for pseudoforms as a computational...
Guido Lupacciolu (1982)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
Si esamina la successione spettrale per la -coomologia dello spazio totale di un fibrato olomorfo nel caso in cui le fibre siano varietà di Stein.