Displaying similar documents to “Obstructions to generic embeddings”

Analytic cohomology of complete intersections in a Banach space

Imre Patyi (2004)

Annales de l’institut Fourier

Similarity:

Let X be a Banach space with a countable unconditional basis (e.g., X = 2 ), Ω X an open set and f 1 , ... , f k complex-valued holomorphic functions on Ω , such that the Fréchet differentials d f 1 ( x ) , ... , d f k ( x ) are linearly independant over at each x Ω . We suppose that M = { x Ω : f 1 ( x ) = ... = f k ( x ) = 0 } is a complete intersection and we consider a holomorphic Banach vector bundle E M . If I (resp. 𝒪 E ) denote the ideal of germs of holomorphic functions on Ω that vanish on M (resp. the sheaf of germs of holomorphic sections of E ), then the sheaf cohomology groups...

BGG resolutions via configuration spaces

Michael Falk, Vadim Schechtman, Alexander Varchenko (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the 𝔰𝔩 2 Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.

Algebras of the cohomology operations in some cohomology theories

A. Jankowski

Similarity:

Contents0. Introduction............................................................................................................................................. 51. Preliminaries.......................................................................................................................................... 62. Generalized cohomology theories with a coefficient group Z p .............................................. 83. Cohomology theory BP* ( , Z p )........................................................................................................

The ℤ₂-cohomology cup-length of real flag manifolds

Július Korbaš, Juraj Lörinc (2003)

Fundamenta Mathematicae

Similarity:

Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds O ( n + . . . + n q ) / O ( n ) × . . . × O ( n q ) , q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any O ( n + . . . + n q ) / O ( n ) × . . . × O ( n q ) , q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.

A review of Lie superalgebra cohomology for pseudoforms

Carlo Alberto Cremonini (2022)

Archivum Mathematicum

Similarity:

This note is based on a short talk presented at the “42nd Winter School Geometry and Physics” held in Srni, Czech Republic, January 15th–22nd 2022. We review the notion of Lie superalgebra cohomology and extend it to different form complexes, typical of the superalgebraic setting. In particular, we introduce pseudoforms as infinite-dimensional modules related to sub-superalgebras. We then show how to extend the Koszul-Hochschild-Serre spectral sequence for pseudoforms as a computational...