Collective geodesic flows
Léo T. Butler[1]; Gabriel P. Paternain[2]
- [1] Northwestern University Department of Mathematics, 2033 Sheridan Road, Evanston, IL 60208 (USA)
- [2] University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Cambridge CB3 0WB (Royaume-Uni)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 1, page 265-308
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topButler, Léo T., and Paternain, Gabriel P.. "Collective geodesic flows." Annales de l’institut Fourier 53.1 (2003): 265-308. <http://eudml.org/doc/116036>.
@article{Butler2003,
abstract = {We show that most compact semi-simple Lie groups carry many left invariant metrics with
positive topological entropy. We also show that many homogeneous spaces admit collective
Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow
has positive topological entropy. Other properties of collective geodesic flows are also
discussed.},
affiliation = {Northwestern University Department of Mathematics, 2033 Sheridan Road, Evanston, IL 60208 (USA); University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Cambridge CB3 0WB (Royaume-Uni)},
author = {Butler, Léo T., Paternain, Gabriel P.},
journal = {Annales de l’institut Fourier},
keywords = {collective geodesic flows; topological entropy; semi-simple Lie algebras; moment map; Melnikov integral},
language = {eng},
number = {1},
pages = {265-308},
publisher = {Association des Annales de l'Institut Fourier},
title = {Collective geodesic flows},
url = {http://eudml.org/doc/116036},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Butler, Léo T.
AU - Paternain, Gabriel P.
TI - Collective geodesic flows
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 265
EP - 308
AB - We show that most compact semi-simple Lie groups carry many left invariant metrics with
positive topological entropy. We also show that many homogeneous spaces admit collective
Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow
has positive topological entropy. Other properties of collective geodesic flows are also
discussed.
LA - eng
KW - collective geodesic flows; topological entropy; semi-simple Lie algebras; moment map; Melnikov integral
UR - http://eudml.org/doc/116036
ER -
References
top- M. Adler, P. van, Moerbeke, Geodesic flow on and the intersection of quadrics, Proc. Nat. Acad. Sci. U.S.A 81 (1984), 4613-4616 Zbl0545.58027MR758421
- M. Adler, P. van, Moerbeke, The algebraic integrability of geodesic flow on , Invent. Math 67 (1982), 297-331 Zbl0539.58012MR665159
- V. I. Arnold, Dynamical Systems III, (1988), Springer Verlag, Berlin Zbl0623.00023MR1292465
- O. I. Bogoyavlensky, Integrable Euler equations on and their physical applications, Comm. Math. Phys 93 (1984), 417-436 Zbl0567.58012MR745694
- A.V. Bolsinov, A.T. Fomenko, Orbital isomorphism between two classical integrable systems. The Euler case and the Jacobi problem, Lie groups and Lie algebras 433 (1998), 359-382, Kluwer Acad. Publ., Dordrecht Zbl0904.58024
- R. Bowen, Entropy for Group Endomorphisms and Homogeneous spaces, Trans. of Am. Math. Soc 153 (1971), 401-414 Zbl0212.29201MR274707
- K. Burns, H. Weiss, A geometric criterion for positive topological entropy, Comm. Math. Phys 172 (1995), 95-118 Zbl0945.37003MR1346373
- V. Guillemin, S. Sternberg, Symplectic techniques in physics, (1984), Cambridge University Press, Cambridge Zbl0576.58012MR770935
- V. Guillemin, S. Sternberg, The moment map and collective motion, Ann. Physics 127 (1980), 220-253 Zbl0453.58015MR576424
- L. Haine, The algebraic complete integrability of geodesic flow on , Comm. Math. Phys 94 (1984), 271-287 Zbl0584.58023MR761797
- H. Hancock, Lectures on the Theory of Elliptic Functions, (1909 (reprint 1958)), Dover, New York
- B. Hasselblatt, A. Katok, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press Zbl0878.58020MR1326374
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces, (2001. Corrected reprint of the 1978 original), American Mathematical Society, Providence, RI Zbl0993.53002MR1834454
- P. Holmes, J. Marsden, Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups, Indiana Univ. Math. J 32 (1983), 273-309 Zbl0488.70006MR690190
- W. Klingenberg, Riemannian Geometry, (1982), De Gruyter, Berlin-New York Zbl0495.53036MR666697
- V.V. Kozlov, D.A. Onishchenko, Nonintegrability of Kirchhoff's equations (Russian), Dokl. Akad. Nauk SSSR 266 (1982), 1298-1300 Zbl0541.70009MR681629
- S. V. Manakov, A remark on the integration of the {E}ulerian equations of the dynamics of an n-dimensional rigid body, Funkcional. Anal. i Priložen. 10 (1976), 93-94 Zbl0343.70003MR455031
- R. Mañé, On the topological entropy of geodesic flows, J. Diff. Geom 45 (1997), 74-93 Zbl0896.58052MR1443332
- A. S. Miščenko, Integrals of geodesic flows on Lie groups, Funkcional. Anal. i Priložen. 4 (1970), 73-77 MR274891
- A. S. Miščenko, A. T. Fomenko, The integration of Euler equations on a semisimple Lie algebra, Dokl. Akad. Nauk SSSR 231 (1976), 536-538 Zbl0392.58001MR501139
- A. S. Miščenko, A. T. Fomenko, A generalized Liouville method for the integration of Hamiltonian systems, Funkcional. Anal. i Priložen. 12 (1978), 46-56 Zbl0396.58003MR516342
- O.E. Orel, Euler-Poinsot dynamical systems and geodesic flows of ellipsoids: topologically nonconjugation, Tensor and vector analysis (1998), 76-84, Gordon and Breach, Amsterdam Zbl0935.37020
- C. Robinson, Horseshoes for autonomous Hamiltonian systems using the Melnikov integral, Ergodic Theory Dynam. Systems 8* (1988), 395-409 Zbl0666.58039
- A. Thimm, Integrable geodesic flows on homogeneous spaces, Ergod. Th. and Dyn. Syst 1 (1981), 495-517 Zbl0491.58014MR662740
- A.P. Veselov, Conditions for the integrability of Euler equations on , (Russian), Dokl. Akad. Nauk SSSR 270 (1983), 1298-1300 Zbl0539.58013MR712935
- P. Walters, An introduction to ergodic theory, (1982), Springer-Verlag, New York-Heidelberg-Berlin Zbl0475.28009MR648108
- A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom 18 (1983), 523-557 Zbl0524.58011MR723816
- Z. Xia, Homoclinic points and intersections of Lagrangian submanifolds, Discrete Contin. Dynam. Systems 6 (2000), 243-253 Zbl1009.37040MR1739927
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.