Collective geodesic flows

Léo T. Butler[1]; Gabriel P. Paternain[2]

  • [1] Northwestern University Department of Mathematics, 2033 Sheridan Road, Evanston, IL 60208 (USA)
  • [2] University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Cambridge CB3 0WB (Royaume-Uni)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 1, page 265-308
  • ISSN: 0373-0956

Abstract

top
We show that most compact semi-simple Lie groups carry many left invariant metrics with positive topological entropy. We also show that many homogeneous spaces admit collective Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow has positive topological entropy. Other properties of collective geodesic flows are also discussed.

How to cite

top

Butler, Léo T., and Paternain, Gabriel P.. "Collective geodesic flows." Annales de l’institut Fourier 53.1 (2003): 265-308. <http://eudml.org/doc/116036>.

@article{Butler2003,
abstract = {We show that most compact semi-simple Lie groups carry many left invariant metrics with positive topological entropy. We also show that many homogeneous spaces admit collective Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow has positive topological entropy. Other properties of collective geodesic flows are also discussed.},
affiliation = {Northwestern University Department of Mathematics, 2033 Sheridan Road, Evanston, IL 60208 (USA); University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Cambridge CB3 0WB (Royaume-Uni)},
author = {Butler, Léo T., Paternain, Gabriel P.},
journal = {Annales de l’institut Fourier},
keywords = {collective geodesic flows; topological entropy; semi-simple Lie algebras; moment map; Melnikov integral},
language = {eng},
number = {1},
pages = {265-308},
publisher = {Association des Annales de l'Institut Fourier},
title = {Collective geodesic flows},
url = {http://eudml.org/doc/116036},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Butler, Léo T.
AU - Paternain, Gabriel P.
TI - Collective geodesic flows
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 265
EP - 308
AB - We show that most compact semi-simple Lie groups carry many left invariant metrics with positive topological entropy. We also show that many homogeneous spaces admit collective Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow has positive topological entropy. Other properties of collective geodesic flows are also discussed.
LA - eng
KW - collective geodesic flows; topological entropy; semi-simple Lie algebras; moment map; Melnikov integral
UR - http://eudml.org/doc/116036
ER -

References

top
  1. M. Adler, P. van, Moerbeke, Geodesic flow on SO ( 4 ) and the intersection of quadrics, Proc. Nat. Acad. Sci. U.S.A 81 (1984), 4613-4616 Zbl0545.58027MR758421
  2. M. Adler, P. van, Moerbeke, The algebraic integrability of geodesic flow on s o ( 4 ) , Invent. Math 67 (1982), 297-331 Zbl0539.58012MR665159
  3. V. I. Arnold, Dynamical Systems III, (1988), Springer Verlag, Berlin Zbl0623.00023MR1292465
  4. O. I. Bogoyavlensky, Integrable Euler equations on s o ( 4 ) and their physical applications, Comm. Math. Phys 93 (1984), 417-436 Zbl0567.58012MR745694
  5. A.V. Bolsinov, A.T. Fomenko, Orbital isomorphism between two classical integrable systems. The Euler case and the Jacobi problem, Lie groups and Lie algebras 433 (1998), 359-382, Kluwer Acad. Publ., Dordrecht Zbl0904.58024
  6. R. Bowen, Entropy for Group Endomorphisms and Homogeneous spaces, Trans. of Am. Math. Soc 153 (1971), 401-414 Zbl0212.29201MR274707
  7. K. Burns, H. Weiss, A geometric criterion for positive topological entropy, Comm. Math. Phys 172 (1995), 95-118 Zbl0945.37003MR1346373
  8. V. Guillemin, S. Sternberg, Symplectic techniques in physics, (1984), Cambridge University Press, Cambridge Zbl0576.58012MR770935
  9. V. Guillemin, S. Sternberg, The moment map and collective motion, Ann. Physics 127 (1980), 220-253 Zbl0453.58015MR576424
  10. L. Haine, The algebraic complete integrability of geodesic flow on so ( N ) , Comm. Math. Phys 94 (1984), 271-287 Zbl0584.58023MR761797
  11. H. Hancock, Lectures on the Theory of Elliptic Functions, (1909 (reprint 1958)), Dover, New York 
  12. B. Hasselblatt, A. Katok, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press Zbl0878.58020MR1326374
  13. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, (2001. Corrected reprint of the 1978 original), American Mathematical Society, Providence, RI Zbl0993.53002MR1834454
  14. P. Holmes, J. Marsden, Horseshoes and Arnol ' d diffusion for Hamiltonian systems on Lie groups, Indiana Univ. Math. J 32 (1983), 273-309 Zbl0488.70006MR690190
  15. W. Klingenberg, Riemannian Geometry, (1982), De Gruyter, Berlin-New York Zbl0495.53036MR666697
  16. V.V. Kozlov, D.A. Onishchenko, Nonintegrability of Kirchhoff's equations (Russian), Dokl. Akad. Nauk SSSR 266 (1982), 1298-1300 Zbl0541.70009MR681629
  17. S. V. Manakov, A remark on the integration of the {E}ulerian equations of the dynamics of an n-dimensional rigid body, Funkcional. Anal. i Priložen. 10 (1976), 93-94 Zbl0343.70003MR455031
  18. R. Mañé, On the topological entropy of geodesic flows, J. Diff. Geom 45 (1997), 74-93 Zbl0896.58052MR1443332
  19. A. S. Miščenko, Integrals of geodesic flows on Lie groups, Funkcional. Anal. i Priložen. 4 (1970), 73-77 MR274891
  20. A. S. Miščenko, A. T. Fomenko, The integration of Euler equations on a semisimple Lie algebra, Dokl. Akad. Nauk SSSR 231 (1976), 536-538 Zbl0392.58001MR501139
  21. A. S. Miščenko, A. T. Fomenko, A generalized Liouville method for the integration of Hamiltonian systems, Funkcional. Anal. i Priložen. 12 (1978), 46-56 Zbl0396.58003MR516342
  22. O.E. Orel, Euler-Poinsot dynamical systems and geodesic flows of ellipsoids: topologically nonconjugation, Tensor and vector analysis (1998), 76-84, Gordon and Breach, Amsterdam Zbl0935.37020
  23. C. Robinson, Horseshoes for autonomous Hamiltonian systems using the Melnikov integral, Ergodic Theory Dynam. Systems 8* (1988), 395-409 Zbl0666.58039
  24. A. Thimm, Integrable geodesic flows on homogeneous spaces, Ergod. Th. and Dyn. Syst 1 (1981), 495-517 Zbl0491.58014MR662740
  25. A.P. Veselov, Conditions for the integrability of Euler equations on s o ( 4 ) , (Russian), Dokl. Akad. Nauk SSSR 270 (1983), 1298-1300 Zbl0539.58013MR712935
  26. P. Walters, An introduction to ergodic theory, (1982), Springer-Verlag, New York-Heidelberg-Berlin Zbl0475.28009MR648108
  27. A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom 18 (1983), 523-557 Zbl0524.58011MR723816
  28. Z. Xia, Homoclinic points and intersections of Lagrangian submanifolds, Discrete Contin. Dynam. Systems 6 (2000), 243-253 Zbl1009.37040MR1739927

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.