Homology of gaussian groups
Patrick Dehornoy[1]; Yves Lafont[2]
- [1] Université de Caen, Laboratoire de Mathématiques Nicolas Oresme, 14032 Caen (France)
- [2] Institut Mathématique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 9 (France)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 2, page 489-540
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDehornoy, Patrick, and Lafont, Yves. "Homology of gaussian groups." Annales de l’institut Fourier 53.2 (2003): 489-540. <http://eudml.org/doc/116044>.
@article{Dehornoy2003,
abstract = {We describe new combinatorial methods for constructing explicit free resolutions of
$\{\mathbb \{Z\}\}$ by $\{\mathbb \{Z\}\}G$-modules when $G$ is a group of fractions of a monoid where
enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for
computing the homology of $G$. Our constructions apply in particular to all Artin-Tits
groups of finite Coexter type. Technically, the proofs rely on the properties of least
common multiples in a monoid.},
affiliation = {Université de Caen, Laboratoire de Mathématiques Nicolas Oresme, 14032 Caen (France); Institut Mathématique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 9 (France)},
author = {Dehornoy, Patrick, Lafont, Yves},
journal = {Annales de l’institut Fourier},
keywords = {free resolution; finite resolution; homology; contacting homotopy; braid groups; Artin groups; free resolutions; finite resolutions; contracting homotopy; groups of fractions; Gaussian monoids},
language = {eng},
number = {2},
pages = {489-540},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homology of gaussian groups},
url = {http://eudml.org/doc/116044},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Dehornoy, Patrick
AU - Lafont, Yves
TI - Homology of gaussian groups
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 489
EP - 540
AB - We describe new combinatorial methods for constructing explicit free resolutions of
${\mathbb {Z}}$ by ${\mathbb {Z}}G$-modules when $G$ is a group of fractions of a monoid where
enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for
computing the homology of $G$. Our constructions apply in particular to all Artin-Tits
groups of finite Coexter type. Technically, the proofs rely on the properties of least
common multiples in a monoid.
LA - eng
KW - free resolution; finite resolution; homology; contacting homotopy; braid groups; Artin groups; free resolutions; finite resolutions; contracting homotopy; groups of fractions; Gaussian monoids
UR - http://eudml.org/doc/116044
ER -
References
top- S.I. Adyan, Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR ; transl. Math. Notes Acad. Sci. USSR 36 ; 36 (1984 ; 1984), 25-34 ; 505-510 Zbl0599.20044MR757642
- J. Altobelli, R. Charney, A geometric rational form for Artin groups of FC type, Geometriae Dedicata 79 (2000), 277-289 Zbl1048.20020MR1755729
- V.I. Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969), 227-231 Zbl0277.55002MR242196
- V.I. Arnold, Toplogical invariants of algebraic functions II, Funkt. Anal. Appl. 4 (1970), 91-98 Zbl0239.14012MR276244
- D. Bessis, The dual braid monoid Zbl1064.20039MR2032983
- M. Bestvina, Non-positively curved aspects of Artin groups of finite type, Geometry & Topology 3 (1999), 269-302 Zbl0998.20034MR1714913
- J. Birman, K.H. Ko, S.J. Lee, A new approach to the word problem in the braid groups, Advances in Math. 139 (1998), 322-353 Zbl0937.20016MR1654165
- E. Brieskorn, Sur les groupes de tresses (d'après V.I. Arnold), Sém. Bourbaki, exp. no 401 (1971) 317 (1973), 21-44 Zbl0277.55003
- E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271 Zbl0243.20037MR323910
- K.S. Brown, Cohomology of groups, (1982), Springer Zbl0584.20036MR672956
- H. Cartan, S. Eilenberg, Homological Algebra, (1956), Princeton University Press, Princeton Zbl0075.24305MR77480
- R. Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (1992), 671-683 Zbl0736.57001MR1157320
- R. Charney, Geodesic automation and growth functions for Artin groups of finite type, Math. Ann. 301 (1995), 307-324 Zbl0813.20042MR1314589
- R. Charney, J. Meier, K. Whittlesey, Bestvina's normal form complex and the homology of Garside groups Zbl1064.20044
- A.H. Clifford, G.B. Preston, The algebraic Theory of Semigroups, vol. 1, AMS Surveys 7 (1961) Zbl0111.03403
- F. Cohen, Cohomology of braid spaces, Bull. Amer. Math. Soc. 79 (1973), 763-766 Zbl0272.55012MR321074
- F. Cohen, Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math. 78 (1988), 167-206 Zbl0682.55011MR975079
- C. de Concini, M. Salvetti, Cohomology of Artin groups, Math. Research Letters 3 (1996), 296-297 Zbl0870.57004
- C. de Concini, M. Salvetti, F. Stumbo, The top-cohomology of Artin groups with coefficients in rank 1 local systems over Z, Topology Appl. 78 (1997), 5-20 Zbl0878.55003MR1465022
- P. Dehornoy, Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris 315 (1992), 633-638 Zbl0790.20056MR1183793
- P. Dehornoy, Gaussian groups are torsion free, J. of Algebra 210 (1998), 291-297 Zbl0959.20035MR1656425
- P. Dehornoy, Braids and self-distributivity, vol. 192 (2000), Birkhäuser Zbl0958.20033MR1778150
- P. Dehornoy, Groupes de Garside, Ann. Sci. École Norm. Sup. 35 (2002), 267-306 Zbl1017.20031MR1914933
- P. Dehornoy, Complete group presentations Zbl1067.20035MR2004483
- P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc. 79 (1999), 569-604 Zbl1030.20021MR1710165
- P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302 Zbl0238.20034MR422673
- E.A. Elrifai, H.R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford 45 (1994), 479-497 Zbl0839.20051MR1315459
- D. Epstein & al., Word Processing in Groups, (1992), Jones & Bartlett Publ. Zbl0764.20017MR1161694
- D.B. Fuks, Cohomology of the braid group mod. 2, Funct. Anal. Appl. 4 (1970), 143-151 Zbl0222.57031MR274463
- F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (1969), 235-254 Zbl0194.03303MR248801
- V.V. Goryunov, The cohomology of braid groups of series C and D and certain stratifications, Funkt. Anal. i Prilozhen. 12 (1978), 76-77 Zbl0401.20034MR498905
- Y. Kobayashi, Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra 65 (1990), 263-275 Zbl0711.20035MR1072284
- Y. Lafont, A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), J. Pure Appl. Algebra 98 (1995), 229-244 Zbl0832.20080MR1324032
- Y. Lafont, A. Prouté, Church-Rosser property and homology of monoids, Math. Struct. Comput. Sci 1 (1991), 297-326 Zbl0748.68035MR1146597
- J.-L. Loday, Higher syzygies, in `Une dégustation topologique: Homotopy theory in the Swiss Alps', Contemp. Math. 265 (2000), 99-127 Zbl0978.20022MR1803954
- M. Picantin, Petits groupes gaussiens, (2000)
- M. Picantin, The center of thin Gaussian groups, J. Algebra 245 (2001), 92-122 Zbl1002.20022MR1868185
- M. Salvetti, Topology of the complement of real hyperplanes in , Invent. Math. 88 (1987), 603-618 Zbl0594.57009MR884802
- M. Salvetti, The homotopy type of Artin groups, Math. Res. Letters 1 (1994), 565-577 Zbl0847.55011MR1295551
- H. Sibert, Extraction of roots in Garside groups, Comm. in Algebra 30 (2002), 2915-2927 Zbl1007.20036MR1908246
- C. Squier, Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra 49 (1987), 201-217 Zbl0648.20045MR920522
- C. Squier, The homological algebra of Artin groups, Math. Scand. 75 (1995), 5-43 Zbl0839.20065MR1308935
- C. Squier, A finiteness condition for rewriting systems, revision by F. Otto and Y. Kobayashi, Theoret. Compt. Sci. 131 (1994), 271-294 Zbl0863.68082MR1288942
- J. Stallings, The cohomology of pregroups, Conference on Group Theory, Lecture Notes in Math. 319 (1973), 169-182 Zbl0263.18016MR382481
- W. Thurston, Finite state algorithms for the braid group, Circulated notes (1988)
- F.V. Vainstein, Cohomologies of braid groups, Functional Anal. Appl. 12 (1978), 135-137 Zbl0424.55015
- V.V. Vershinin, Braid groups and loop spaces, Uspekhi Mat. Nauk 54 (1999), 3-84 Zbl1124.20304MR1711263
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.