Homology of gaussian groups

Patrick Dehornoy[1]; Yves Lafont[2]

  • [1] Université de Caen, Laboratoire de Mathématiques Nicolas Oresme, 14032 Caen (France)
  • [2] Institut Mathématique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 9 (France)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 2, page 489-540
  • ISSN: 0373-0956

Abstract

top
We describe new combinatorial methods for constructing explicit free resolutions of by G -modules when G is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of G . Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.

How to cite

top

Dehornoy, Patrick, and Lafont, Yves. "Homology of gaussian groups." Annales de l’institut Fourier 53.2 (2003): 489-540. <http://eudml.org/doc/116044>.

@article{Dehornoy2003,
abstract = {We describe new combinatorial methods for constructing explicit free resolutions of $\{\mathbb \{Z\}\}$ by $\{\mathbb \{Z\}\}G$-modules when $G$ is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of $G$. Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.},
affiliation = {Université de Caen, Laboratoire de Mathématiques Nicolas Oresme, 14032 Caen (France); Institut Mathématique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 9 (France)},
author = {Dehornoy, Patrick, Lafont, Yves},
journal = {Annales de l’institut Fourier},
keywords = {free resolution; finite resolution; homology; contacting homotopy; braid groups; Artin groups; free resolutions; finite resolutions; contracting homotopy; groups of fractions; Gaussian monoids},
language = {eng},
number = {2},
pages = {489-540},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homology of gaussian groups},
url = {http://eudml.org/doc/116044},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Dehornoy, Patrick
AU - Lafont, Yves
TI - Homology of gaussian groups
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 489
EP - 540
AB - We describe new combinatorial methods for constructing explicit free resolutions of ${\mathbb {Z}}$ by ${\mathbb {Z}}G$-modules when $G$ is a group of fractions of a monoid where enough lest common multiples exist (“locally Gaussian monoid”), and therefore, for computing the homology of $G$. Our constructions apply in particular to all Artin-Tits groups of finite Coexter type. Technically, the proofs rely on the properties of least common multiples in a monoid.
LA - eng
KW - free resolution; finite resolution; homology; contacting homotopy; braid groups; Artin groups; free resolutions; finite resolutions; contracting homotopy; groups of fractions; Gaussian monoids
UR - http://eudml.org/doc/116044
ER -

References

top
  1. S.I. Adyan, Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR ; transl. Math. Notes Acad. Sci. USSR 36 ; 36 (1984 ; 1984), 25-34 ; 505-510 Zbl0599.20044MR757642
  2. J. Altobelli, R. Charney, A geometric rational form for Artin groups of FC type, Geometriae Dedicata 79 (2000), 277-289 Zbl1048.20020MR1755729
  3. V.I. Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969), 227-231 Zbl0277.55002MR242196
  4. V.I. Arnold, Toplogical invariants of algebraic functions II, Funkt. Anal. Appl. 4 (1970), 91-98 Zbl0239.14012MR276244
  5. D. Bessis, The dual braid monoid Zbl1064.20039MR2032983
  6. M. Bestvina, Non-positively curved aspects of Artin groups of finite type, Geometry & Topology 3 (1999), 269-302 Zbl0998.20034MR1714913
  7. J. Birman, K.H. Ko, S.J. Lee, A new approach to the word problem in the braid groups, Advances in Math. 139 (1998), 322-353 Zbl0937.20016MR1654165
  8. E. Brieskorn, Sur les groupes de tresses (d'après V.I. Arnold), Sém. Bourbaki, exp. no 401 (1971) 317 (1973), 21-44 Zbl0277.55003
  9. E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271 Zbl0243.20037MR323910
  10. K.S. Brown, Cohomology of groups, (1982), Springer Zbl0584.20036MR672956
  11. H. Cartan, S. Eilenberg, Homological Algebra, (1956), Princeton University Press, Princeton Zbl0075.24305MR77480
  12. R. Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (1992), 671-683 Zbl0736.57001MR1157320
  13. R. Charney, Geodesic automation and growth functions for Artin groups of finite type, Math. Ann. 301 (1995), 307-324 Zbl0813.20042MR1314589
  14. R. Charney, J. Meier, K. Whittlesey, Bestvina's normal form complex and the homology of Garside groups Zbl1064.20044
  15. A.H. Clifford, G.B. Preston, The algebraic Theory of Semigroups, vol. 1, AMS Surveys 7 (1961) Zbl0111.03403
  16. F. Cohen, Cohomology of braid spaces, Bull. Amer. Math. Soc. 79 (1973), 763-766 Zbl0272.55012MR321074
  17. F. Cohen, Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math. 78 (1988), 167-206 Zbl0682.55011MR975079
  18. C. de Concini, M. Salvetti, Cohomology of Artin groups, Math. Research Letters 3 (1996), 296-297 Zbl0870.57004
  19. C. de Concini, M. Salvetti, F. Stumbo, The top-cohomology of Artin groups with coefficients in rank 1 local systems over Z, Topology Appl. 78 (1997), 5-20 Zbl0878.55003MR1465022
  20. P. Dehornoy, Deux propriétés des groupes de tresses, C. R. Acad. Sci. Paris 315 (1992), 633-638 Zbl0790.20056MR1183793
  21. P. Dehornoy, Gaussian groups are torsion free, J. of Algebra 210 (1998), 291-297 Zbl0959.20035MR1656425
  22. P. Dehornoy, Braids and self-distributivity, vol. 192 (2000), Birkhäuser Zbl0958.20033MR1778150
  23. P. Dehornoy, Groupes de Garside, Ann. Sci. École Norm. Sup. 35 (2002), 267-306 Zbl1017.20031MR1914933
  24. P. Dehornoy, Complete group presentations Zbl1067.20035MR2004483
  25. P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc. 79 (1999), 569-604 Zbl1030.20021MR1710165
  26. P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302 Zbl0238.20034MR422673
  27. E.A. Elrifai, H.R. Morton, Algorithms for positive braids, Quart. J. Math. Oxford 45 (1994), 479-497 Zbl0839.20051MR1315459
  28. D. Epstein & al., Word Processing in Groups, (1992), Jones & Bartlett Publ. Zbl0764.20017MR1161694
  29. D.B. Fuks, Cohomology of the braid group mod. 2, Funct. Anal. Appl. 4 (1970), 143-151 Zbl0222.57031MR274463
  30. F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 (1969), 235-254 Zbl0194.03303MR248801
  31. V.V. Goryunov, The cohomology of braid groups of series C and D and certain stratifications, Funkt. Anal. i Prilozhen. 12 (1978), 76-77 Zbl0401.20034MR498905
  32. Y. Kobayashi, Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra 65 (1990), 263-275 Zbl0711.20035MR1072284
  33. Y. Lafont, A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), J. Pure Appl. Algebra 98 (1995), 229-244 Zbl0832.20080MR1324032
  34. Y. Lafont, A. Prouté, Church-Rosser property and homology of monoids, Math. Struct. Comput. Sci 1 (1991), 297-326 Zbl0748.68035MR1146597
  35. J.-L. Loday, Higher syzygies, in `Une dégustation topologique: Homotopy theory in the Swiss Alps', Contemp. Math. 265 (2000), 99-127 Zbl0978.20022MR1803954
  36. M. Picantin, Petits groupes gaussiens, (2000) 
  37. M. Picantin, The center of thin Gaussian groups, J. Algebra 245 (2001), 92-122 Zbl1002.20022MR1868185
  38. M. Salvetti, Topology of the complement of real hyperplanes in 𝐂 N , Invent. Math. 88 (1987), 603-618 Zbl0594.57009MR884802
  39. M. Salvetti, The homotopy type of Artin groups, Math. Res. Letters 1 (1994), 565-577 Zbl0847.55011MR1295551
  40. H. Sibert, Extraction of roots in Garside groups, Comm. in Algebra 30 (2002), 2915-2927 Zbl1007.20036MR1908246
  41. C. Squier, Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra 49 (1987), 201-217 Zbl0648.20045MR920522
  42. C. Squier, The homological algebra of Artin groups, Math. Scand. 75 (1995), 5-43 Zbl0839.20065MR1308935
  43. C. Squier, A finiteness condition for rewriting systems, revision by F. Otto and Y. Kobayashi, Theoret. Compt. Sci. 131 (1994), 271-294 Zbl0863.68082MR1288942
  44. J. Stallings, The cohomology of pregroups, Conference on Group Theory, Lecture Notes in Math. 319 (1973), 169-182 Zbl0263.18016MR382481
  45. W. Thurston, Finite state algorithms for the braid group, Circulated notes (1988) 
  46. F.V. Vainstein, Cohomologies of braid groups, Functional Anal. Appl. 12 (1978), 135-137 Zbl0424.55015
  47. V.V. Vershinin, Braid groups and loop spaces, Uspekhi Mat. Nauk 54 (1999), 3-84 Zbl1124.20304MR1711263

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.