Quasi-isometric vector bundles and bounded factorization of holomorphic matrices
Bo Berndtsson[1]; Jean-Pierre Rosay[2]
- [1] Chalmers University of Technology and the University of Göteborg, Department of Mathematics, 412 96 Göteborg (Suède)
- [2] University of Wisconsin, Department of Mathematics, Madison WI 53706 (USA)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 3, page 885-901
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBerndtsson, Bo, and Rosay, Jean-Pierre. "Quasi-isometric vector bundles and bounded factorization of holomorphic matrices." Annales de l’institut Fourier 53.3 (2003): 885-901. <http://eudml.org/doc/116057>.
@article{Berndtsson2003,
abstract = {We give a sufficient condition for a hermitian holomorphic vector bundle over the disk to
be quasi-isometric to the trivial bundle. One consequence is a version of Cartan's lemma
on the factorization of matrices with uniform bounds.},
affiliation = {Chalmers University of Technology and the University of Göteborg, Department of Mathematics, 412 96 Göteborg (Suède); University of Wisconsin, Department of Mathematics, Madison WI 53706 (USA)},
author = {Berndtsson, Bo, Rosay, Jean-Pierre},
journal = {Annales de l’institut Fourier},
keywords = {vector bundle; maximum principle; holomorphic vector bundle; Hermitian vector bundle; Hermitian holomorphic vector bundle},
language = {eng},
number = {3},
pages = {885-901},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quasi-isometric vector bundles and bounded factorization of holomorphic matrices},
url = {http://eudml.org/doc/116057},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Berndtsson, Bo
AU - Rosay, Jean-Pierre
TI - Quasi-isometric vector bundles and bounded factorization of holomorphic matrices
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 885
EP - 901
AB - We give a sufficient condition for a hermitian holomorphic vector bundle over the disk to
be quasi-isometric to the trivial bundle. One consequence is a version of Cartan's lemma
on the factorization of matrices with uniform bounds.
LA - eng
KW - vector bundle; maximum principle; holomorphic vector bundle; Hermitian vector bundle; Hermitian holomorphic vector bundle
UR - http://eudml.org/doc/116057
ER -
References
top- L. Alexandersson, On vanishing-curvature extensions of Lorentzian metrics, J. Geom. Anal 4 (1994) Zbl0811.53064MR1305992
- B. Berndtsson, and Carleson type inequalities, Complex analysis, II (College Park, Md., 1985--86) 1276 (1987), 42-54, Springer, Berlin Zbl0627.32014
- A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math 81 (1948) Zbl0033.37701MR27954
- A. Brudnyi, Matrix-valued Corona theorem for multiply connected domains, Indiana Univ. Math. J 49 (2000) Zbl1046.46503MR1836534
- G. D. Birkhoff, A theorem on matrices of analytic functions, Math. Ann 74 (1913) Zbl44.0469.02MR1511753
- S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds, (1990), Oxford Science Publications. The Clarendon Press, Oxford Univ, New York Zbl0820.57002MR1079726
- T. W. Gamelin, Wolff's proof of the Corona theorem, Israel J. Math 37 (1980), 113-119 Zbl0466.46050MR599306
- L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474 Zbl0492.32025MR660145
- N. Nikolskii, Treatise on the shift operator. Spectral function theory, 273 (1986), Springer-Verlag, Berlin Zbl0587.47036MR827223
- G. Segal, A. Pressley, Loop groups, (1986), Oxford Science Publications. The Clarendon Press, Oxford Univer, New York Zbl0618.22011MR900587
- E. L. Stout, The second Cousin problem with bounded data, Pacific J. Math 26 (1968), 379-387 Zbl0183.35201MR235155
- E.L. Stout, On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm. Sup. Pisa 27 (1973), 1-17 Zbl0261.32008MR367282
- N. Wiener, P. Masani, The prediction theory of multivariate stochastic processes I. The regularity condition, Acta Math. 98 (1957) Zbl0080.13002MR97856
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.