Bernstein polynomials and spectral numbers for linear free divisors

Christian Sevenheck[1]

  • [1] Universität Mannheim Lehrstuhl für Mathematik VI Seminargebäude A5 68131 Mannheim (Germany)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 1, page 379-400
  • ISSN: 0373-0956

Abstract

top
We discuss Bernstein polynomials of reductive linear free divisors. We define suitable Brieskorn lattices for these non-isolated singularities, and show the analogue of Malgrange’s result relating the roots of the Bernstein polynomial to the residue eigenvalues on the saturation of these Brieskorn lattices.

How to cite

top

Sevenheck, Christian. "Bernstein polynomials and spectral numbers for linear free divisors." Annales de l’institut Fourier 61.1 (2011): 379-400. <http://eudml.org/doc/219678>.

@article{Sevenheck2011,
abstract = {We discuss Bernstein polynomials of reductive linear free divisors. We define suitable Brieskorn lattices for these non-isolated singularities, and show the analogue of Malgrange’s result relating the roots of the Bernstein polynomial to the residue eigenvalues on the saturation of these Brieskorn lattices.},
affiliation = {Universität Mannheim Lehrstuhl für Mathematik VI Seminargebäude A5 68131 Mannheim (Germany)},
author = {Sevenheck, Christian},
journal = {Annales de l’institut Fourier},
keywords = {Brieskorn lattice; Bernstein polynomial; linear free divisors; spectral numbers},
language = {eng},
number = {1},
pages = {379-400},
publisher = {Association des Annales de l’institut Fourier},
title = {Bernstein polynomials and spectral numbers for linear free divisors},
url = {http://eudml.org/doc/219678},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Sevenheck, Christian
TI - Bernstein polynomials and spectral numbers for linear free divisors
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 1
SP - 379
EP - 400
AB - We discuss Bernstein polynomials of reductive linear free divisors. We define suitable Brieskorn lattices for these non-isolated singularities, and show the analogue of Malgrange’s result relating the roots of the Bernstein polynomial to the residue eigenvalues on the saturation of these Brieskorn lattices.
LA - eng
KW - Brieskorn lattice; Bernstein polynomial; linear free divisors; spectral numbers
UR - http://eudml.org/doc/219678
ER -

References

top
  1. I. N. Bernstein, Analytic continuation of generalized functions with respect to a parameter, Functional Analysis and Its Applications 6 (1972), 26-40 Zbl0282.46038MR320735
  2. Jan-Erik Björk, Analytic 𝒟 -modules and applications, 247 (1993), Kluwer Academic Publishers Group, Dordrecht Zbl0805.32001MR1232191
  3. Ragnar-Olaf Buchweitz, David Mond, Linear free divisors and quiver representations, Singularities and computer algebra 324 (2006), 41-77, Cambridge Univ. Press, Cambridge Zbl1101.14013MR2228227
  4. Antoine Douai, Examples of limits of Frobenius (type) structures: The singularity case, (2008) 
  5. Antoine Douai, Etienne Mann, The small quantum cohomology of a weighted projective space, a mirror 𝒟 -module and their classical limits, (2009) Zbl1273.14112
  6. Antoine Douai, Claude Sabbah, Gauss-Manin systems, Brieskorn lattices and Frobenius structures. I, Ann. Inst. Fourier (Grenoble) 53 (2003), 1055-1116 Zbl1079.32016MR2033510
  7. Antoine Douai, Claude Sabbah, Gauss-Manin systems, Brieskorn lattices and Frobenius structures. II, Frobenius manifolds (2004), 1-18, Vieweg, Wiesbaden Zbl1079.32017MR2115764
  8. Michel Granger, David Mond, Alicia Nieto, Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem., Ann. Inst. Fourier (Grenoble) 59 (2009), 811-850 Zbl1163.32014MR2521436
  9. Michel Granger, Mathias Schulze, On the symmetry of b-functions of linear free divisors., (2008) Zbl1202.14046
  10. Ignacio d. Gregorio, David Mond, Christian Sevenheck, Linear free divisors and Frobenius manifolds, Compositio Mathematica 145 (2009), 1305-1350 Zbl1238.32022MR2551998
  11. Ignacio d. Gregorio, Christian Sevenheck, Good bases for some linear free divisors associated to quiver representations Zbl1238.32022
  12. G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3.1.0 — A computer algebra system for polynomial computations, (2009) Zbl0902.14040
  13. Akihiko Gyoja, Theory of prehomogeneous vector spaces without regularity condition, Publ. Res. Inst. Math. Sci. 27 (1991), 861-922 Zbl0773.14025MR1145669
  14. Claus Hertling, Christian Sevenheck, Nilpotent orbits of a generalization of Hodge structures., J. Reine Angew. Math. 609 (2007), 23-80 Zbl1136.32011MR2350780
  15. Claus Hertling, Colin Stahlke, Bernstein polynomial and Tjurina number, Geom. Dedicata 75 (1999), 137-176 Zbl0955.32022MR1686755
  16. Hiroshi Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 22 (2009), 1016-1079 Zbl1190.14054MR2553377
  17. Masaki Kashiwara, B -functions and holonomic systems. Rationality of roots of B -functions, Invent. Math. 38 (1976/77), 33-53 Zbl0354.35082MR430304
  18. Philippe Maisonobe, Zoghman Mebkhout, Le théorème de comparaison pour les cycles évanescents, Éléments de la théorie des systèmes différentiels géométriques 8 (2004), 311-389, MaisonobePhilippeP., Paris Zbl1105.14017MR2089892
  19. Éléments de la théorie des systèmes différentiels géométriques, 8 (2004), MaisonobePhilippeP., Paris MR2089892
  20. Bernard Malgrange, Le polynôme de Bernstein d’une singularité isolée, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) (1975), 98-119. Lecture Notes in Math., Vol. 459, ChazarainJ.J., Berlin Zbl0308.32007
  21. Zoghman Mebkhout, Le théorème de positivité, le théorème de comparaison et le théorème d’existence de Riemann, Éléments de la théorie des systèmes différentiels , géométriques 8 (2004), 165-310, MaisonobePhilippeP., Paris MR2077649
  22. Céline Roucairol, Irregularity of an analogue of the Gauss-Manin systems, Bull. Soc. Math. France 134 (2006), 269-286 Zbl1122.32019MR2233709
  23. Céline Roucairol, The irregularity of the direct image of some 𝒟 -modules, Publ. Res. Inst. Math. Sci. 42 (2006), 923-932 Zbl1132.32005MR2289081
  24. Céline Roucairol, Formal structure of direct image of holonomic 𝒟 -modules of exponential type, Manuscripta Math. 124 (2007), 299-318 Zbl1140.32021MR2350548
  25. Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291 Zbl0496.32007MR586450
  26. M. Sato, T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155 Zbl0321.14030MR430336

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.