Approximation of holomorphic functions of infinitely many variables II

László Lempert

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 2, page 423-442
  • ISSN: 0373-0956

Abstract

top
Let X be a Banach space and B ( R ) X the ball of radius R centered at 0 . Can any holomorphic function on B ( R ) be approximated by entire functions, uniformly on smaller balls B ( r ) ? We answer this question in the affirmative for a large class of Banach spaces.

How to cite

top

Lempert, László. "Approximation of holomorphic functions of infinitely many variables II." Annales de l'institut Fourier 50.2 (2000): 423-442. <http://eudml.org/doc/75424>.

@article{Lempert2000,
abstract = {Let $X$ be a Banach space and $B(R)\subset X$ the ball of radius $R$ centered at $0$. Can any holomorphic function on $B(R)$ be approximated by entire functions, uniformly on smaller balls $B(r)$? We answer this question in the affirmative for a large class of Banach spaces.},
author = {Lempert, László},
journal = {Annales de l'institut Fourier},
keywords = {holomorphic functions; Banach space; pseudoconvex domain; approximation problem; unconditional basis; Fréchet space; sheaf of germs},
language = {eng},
number = {2},
pages = {423-442},
publisher = {Association des Annales de l'Institut Fourier},
title = {Approximation of holomorphic functions of infinitely many variables II},
url = {http://eudml.org/doc/75424},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Lempert, László
TI - Approximation of holomorphic functions of infinitely many variables II
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 2
SP - 423
EP - 442
AB - Let $X$ be a Banach space and $B(R)\subset X$ the ball of radius $R$ centered at $0$. Can any holomorphic function on $B(R)$ be approximated by entire functions, uniformly on smaller balls $B(r)$? We answer this question in the affirmative for a large class of Banach spaces.
LA - eng
KW - holomorphic functions; Banach space; pseudoconvex domain; approximation problem; unconditional basis; Fréchet space; sheaf of germs
UR - http://eudml.org/doc/75424
ER -

References

top
  1. [D1] S. DINEEN, Cousin's first problem on certain locally convex topological vector spaces, An. Acad. Brasil. Cienc., 48 (1976), 11-12. Zbl0354.46029MR55 #11290
  2. [D2] S. DINEEN, Complex Analysis in Locally Convex Spaces, North Holland, Amsterdam, 1981. Zbl0484.46044MR84b:46050
  3. [D3] S. DINEEN, Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999. Zbl1034.46504MR2001a:46043
  4. [DS] N. DUNFORD, T. SCHWARTZ, Linear Operators I, John Wiley & Sons, New York, 1988. 
  5. [L1] L. LEMPERT, Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier, 49-4 (1999), 1293-1304. Zbl0944.46046MR2001d:32027
  6. [L2] L. LEMPERT, The Dolbeault complex in infinite dimensions, II, J. Amer. Math. Soc., 12 (1999), 775-793. Zbl0926.32048MR2000e:32053
  7. [L3] L. LEMPERT, The Dolbeault complex in infinite dimensions III, manuscript.. Zbl0926.32048
  8. [M] P. MAZET, Analytic Sets in Locally Convex Spaces, North Holland, Amsterdam, 1984. Zbl0588.46032MR86i:32012
  9. [MV] R. MEISE and D. VOGT, Counterexamples in holomorphic functions on nuclear Fréchet spaces, Math. Z., 182 (1983), 167-177. Zbl0509.46041MR84m:46048
  10. [N] P. NOVERRAZ, Pseudo-convexité polynomiale et domaines d'holomorphie en dimension infinie, North Holland, Amsterdam, 1973. Zbl0251.46049MR50 #10814
  11. [P] I. PATYI, On the ∂-equation in a Banach space, Bull. Soc. Math. France, to appear. Zbl0967.32036
  12. [R] R. A. RYAN, Holomorphic mappings in l1, Trans. Amer. Soc., 302 (1987), 797-811. Zbl0637.46045MR88h:46089
  13. [S] I. SINGER, Bases in Banach spaces I-II, Springer, Berlin, 1981. Zbl0467.46020MR82k:46024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.