Analytic sheaves in Banach spaces

László Lempert; Imre Patyi

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 3, page 453-486
  • ISSN: 0012-9593

How to cite

top

Lempert, László, and Patyi, Imre. "Analytic sheaves in Banach spaces." Annales scientifiques de l'École Normale Supérieure 40.3 (2007): 453-486. <http://eudml.org/doc/82718>.

@article{Lempert2007,
author = {Lempert, László, Patyi, Imre},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {plain sheaves; plain homomorphisms; complete resolution; cohesive sheaf},
language = {eng},
number = {3},
pages = {453-486},
publisher = {Elsevier},
title = {Analytic sheaves in Banach spaces},
url = {http://eudml.org/doc/82718},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Lempert, László
AU - Patyi, Imre
TI - Analytic sheaves in Banach spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 3
SP - 453
EP - 486
LA - eng
KW - plain sheaves; plain homomorphisms; complete resolution; cohesive sheaf
UR - http://eudml.org/doc/82718
ER -

References

top
  1. [1] Bishop E., Analytic functions with values in a Fréchet space, Pacific J. Math.12 (1962) 1177-1192. Zbl0116.06301MR159037
  2. [2] Bredon G.E., Sheaf Theory, second ed., Springer, New York, 1997. Zbl0874.55001MR1481706
  3. [3] Bungart L., Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans Amer. Math. Soc.111 (1964) 317-344. Zbl0142.33902MR157004
  4. [4] Cartan H., Séminaire École Norm. Sup. 4, Fonctions analytiques de plusieurs variables complexes, Paris, 1951–52. 
  5. [5] Dineen S., Bounding subsets of a Banach space, Math. Ann.192 (1971) 61-70. Zbl0202.12803MR303290
  6. [6] Docquier F., Grauert H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann.140 (1960) 94-123. Zbl0095.28004MR148939
  7. [7] Douady A., Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble)16 (1966) 1-95. Zbl0146.31103MR203082
  8. [8] Douady A., A remark on Banach analytic spaces, in: Symposium on Infinite-Dimensional Topology, Baton Rouge, LA, 1967, Ann. of Math. Studies, vol. 69, Princeton Univ. Press, Princeton, NJ, 1972, pp. 41-42. Zbl0229.54031MR404704
  9. [9] Griffiths P., Adams J., Topics in Algebraic and Analytic Geometry, Mathematical Notes, Princeton Univ. Press, Princeton, NJ, 1974. Zbl0302.14003MR355119
  10. [10] Josefson B., Bounding subsets of l A , J. Math. Pures Appl.57 (1978) 397-421. Zbl0403.46011MR524627
  11. [11] Josefson B., Approximations of holomorphic functions in certain Banach spaces, Internat. J. Math.15 (2004) 467-471. Zbl1061.46041MR2072089
  12. [12] Kelly G.M., Basic Concepts of Enriched Category Theory, Cambridge Univ. Press, Cambridge, 1982. Zbl0478.18005MR651714
  13. [13] Leiterer J., Banach coherent analytic Fréchet sheaves, Math. Nachr.85 (1978) 91-109. Zbl0409.32017MR517643
  14. [14] Lempert L., The Dolbeault complex in infinite dimensions I, J. Amer. Math. Soc.11 (1998) 485-520. Zbl0904.32014MR1603858
  15. [15] Lempert L., Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier (Grenoble)49 (1999) 1293-1304. Zbl0944.46046MR1703089
  16. [16] Lempert L., Approximation of holomorphic functions of infinitely many variables II, Ann. Inst. Fourier (Grenoble)50 (2000) 423-442. Zbl0969.46032MR1775356
  17. [17] Lempert L., The Dolbeault complex in infinite dimensions III, Invent. Math.142 (2000) 579-603. Zbl0983.32010MR1804162
  18. [18] Lempert L., Plurisubharmonic domination, J. Amer. Math. Soc.17 (2004) 361-372. Zbl1042.32013MR2051614
  19. [19] Lempert L., Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math.8 (2004) 65-86. Zbl1089.32011MR2128298
  20. [20] Meylan F., Approximation of holomorphic functions in Banach spaces admitting a Schauder decomposition, Ann. Scuola Norm. Sup. Pisa (2006). Zbl1150.46017MR2240163
  21. [21] Mujica J., Complex Analysis in Banach Spaces, North-Holland, Amsterdam, 1986. Zbl0586.46040MR842435
  22. [22] Patyi I., On the ¯ equation in a Banach space, Bull. Soc. Math. France128 (2000) 391-406. Zbl0967.32036MR1792475
  23. [23] Patyi I., On the Oka principle in a Banach space, I, Math. Ann.326 (2003) 417-441. Zbl1044.32018MR1992271
  24. [24] Patyi I., On the Oka principle in a Banach space, II, Math. Ann.326 (2003) 443-458. Zbl1045.32023MR1992271
  25. [25] Patyi I., Cohomological characterization of pseudoconvexity in a Banach space, Math. Z.245 (2003) 371-386. Zbl1040.32028MR2013505
  26. [26] Patyi I., Analytic cohomology of complete intersections in a Banach space, Ann. Inst. Fourier (Grenoble)54 (2004) 147-158. Zbl1080.32017MR2069124
  27. [27] Patyi I., On holomorphic Banach vector bundles over Banach spaces, manuscript, math.CV/0509557. 
  28. [28] Patyi I., An analytic Koszul complex in a Banach space, manuscript, math.CV/0509556. 
  29. [29] Patyi I., Analytic cohomology in a Banach space, manuscript, math.CV/0507520. 
  30. [30] Pestov V., Analytic subsets of Hilbert spaces, in: Fruchard A., Troesch A. (Eds.), Actes du colloque trajectorien, IRMA, Strasbourg, 1995, pp. 75-80. MR1369104
  31. [31] Ramis J.P., Sous-ensembles analytiques d'une variété banachique complexe, Springer, Berlin–New York, 1970. Zbl0212.42802
  32. [32] Serre J.-P., Faisceaux algébriques cohérents, Ann. Math.61 (1955) 197-278. Zbl0067.16201MR68874
  33. [33] Singer I., Bases in Banach Spaces, I–II, Springer, Berlin, 1981. Zbl0198.16601
  34. [34] Siu Y.T., Every Stein variety admits a Stein neighborhood, Invent. Math.38 (1976/77) 89-100. Zbl0343.32014MR435447

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.