Degenerations for representations of tame quivers
Annales scientifiques de l'École Normale Supérieure (1995)
- Volume: 28, Issue: 5, page 647-668
 - ISSN: 0012-9593
 
Access Full Article
topHow to cite
topBongartz, Klaus. "Degenerations for representations of tame quivers." Annales scientifiques de l'École Normale Supérieure 28.5 (1995): 647-668. <http://eudml.org/doc/82397>.
@article{Bongartz1995,
	author = {Bongartz, Klaus},
	journal = {Annales scientifiques de l'École Normale Supérieure},
	keywords = {path algebra; quiver; finite dimensional -modules},
	language = {eng},
	number = {5},
	pages = {647-668},
	publisher = {Elsevier},
	title = {Degenerations for representations of tame quivers},
	url = {http://eudml.org/doc/82397},
	volume = {28},
	year = {1995},
}
TY  - JOUR
AU  - Bongartz, Klaus
TI  - Degenerations for representations of tame quivers
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1995
PB  - Elsevier
VL  - 28
IS  - 5
SP  - 647
EP  - 668
LA  - eng
KW  - path algebra; quiver; finite dimensional -modules
UR  - http://eudml.org/doc/82397
ER  - 
References
top- [1] S. ABEASIS and A. del FRA, Degenerations for the representations of a quiver of type Am (J. of Algebra, Vol. 93, 1985, pp. 376-412). Zbl0598.16030MR86j:16028
 - [2] S. ABEASIS and A. del FRA, Degenerations for the representations of an equioriented quiver of type Dm (Adv. Math., Vol. 52, 1984, pp. 81-172). Zbl0537.16025MR86g:16039
 - [3] M. AUSLANDER and I. REITEN, Modules determined by their composition factors (Illinois J. Math., Vol. 29, 1985, pp. 289-301). Zbl0539.16011MR86i:16032
 - [4] K. BONGARTZ, A generalization of a theorem of M.Auslander (Bull. London Math. Soc., Vol. 21, 1989, pp. 255-256). Zbl0669.16018MR90b:16031
 - [5] K. BONGARTZ, A geometric version of the Morita equivalence (J. Algebra, Vol. 139, 1991, pp. 159-179). Zbl0787.16011MR92f:16008
 - [6] K. BONGARTZ, On degenerations and extensions of finite dimensional modules (accepted 1990 for publication in Adv.Math., but not yet appeared, preprint of 53 pages). Zbl0862.16007
 - [7] K. BONGARTZ, Minimal singularities for representations of Dynkin quivers (to appear in Comm. Math. Helv., preprint of 24 pages, 1993). Zbl0832.16008
 - [8] V. DLAB and C. M. RINGEL, Indecomposable representations of graphs and algebras (Memoirs Amer. Math. Soc., Vol. 173, 1976). Zbl0332.16015MR56 #5657
 - [9] P. DONOVAN and M. R. FREISLICH, The representation theory of finite graphs and associated algebras (Carleton Lecture notes 5, Ottawa, 1973). Zbl0304.08006MR50 #9701
 - [10] S. FRIEDLAND, Simultaneous similarity of matrices (Adv. Math., Vol. 50, 1983, pp. 189-265). Zbl0532.15009MR86b:14020
 - [11] P. GABRIEL, The universal cover of a representation-finite algebra, (Springer Lecture Notes, Vol. 903, 1980, pp. 68-105). Zbl0481.16008MR83f:16036
 - [12] P. GABRIEL, B. KELLER and A. V. ROITER, Representations of finite-dimensional algebras (Encycl. Math. Sc., Vol. 73, 1992, pp. 1-176). MR94h:16001b
 - [13] G. KEMPKEN, Eine Darstellung des Kchers Ãk (Bonner Math. Schriften, Vol. 137, 1982, pp. 1-159). Zbl0498.14021MR84a:14022
 - [14] G. HERMANN, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale (Math. Ann. Bd., Vol. 95, 1926, pp. 736-788). Zbl52.0127.01JFM52.0127.01
 - [15] L. A. NAZAROVA, Representations of quivers of infinite type (Izvest. Akad. Nauk. SSR, Ser. Mat., Vol. 37, 1973, pp. 752-791). Zbl0343.15004MR49 #2785
 - [16] C. RIEDTMANN, Degenerations for representations of quivers with relations (Ann. Sci. Ecole Norm. Sup., Vol. 4, 1986, pp. 275-301). Zbl0603.16025MR88b:16051
 - [17] C. M. RINGEL, Tame algebras and quadratic forms (Lecture Notes in Math. 1099, Springer Verlag, 1984). Zbl0546.16013MR87f:16027
 - [18] C. M. RINGEL, The rational invariants of tame quivers (Invent. Math., Vol. 58, 1980, pp. 217-239). Zbl0433.15009MR81f:16048
 
Citations in EuDML Documents
top- Philippe Caldero, Ralf Schiffler, Rational smoothness of varieties of representations for quivers of Dynkin type
 - Grzegorz Zwara, Degenerations for modules over representation-finite selfinjective algebras
 - Grzegorz Zwara, Degenerations in the Module Varieties of Generalized Standard Auslander-Reiten Components
 - Andrzej Skowroński, Grzegorz Zwara, Degenerations for indecomposable modules and tame algebras
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.