Degenerations for representations of tame quivers

Klaus Bongartz

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 5, page 647-668
  • ISSN: 0012-9593

How to cite

top

Bongartz, Klaus. "Degenerations for representations of tame quivers." Annales scientifiques de l'École Normale Supérieure 28.5 (1995): 647-668. <http://eudml.org/doc/82397>.

@article{Bongartz1995,
author = {Bongartz, Klaus},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {path algebra; quiver; finite dimensional -modules},
language = {eng},
number = {5},
pages = {647-668},
publisher = {Elsevier},
title = {Degenerations for representations of tame quivers},
url = {http://eudml.org/doc/82397},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Bongartz, Klaus
TI - Degenerations for representations of tame quivers
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 5
SP - 647
EP - 668
LA - eng
KW - path algebra; quiver; finite dimensional -modules
UR - http://eudml.org/doc/82397
ER -

References

top
  1. [1] S. ABEASIS and A. del FRA, Degenerations for the representations of a quiver of type Am (J. of Algebra, Vol. 93, 1985, pp. 376-412). Zbl0598.16030MR86j:16028
  2. [2] S. ABEASIS and A. del FRA, Degenerations for the representations of an equioriented quiver of type Dm (Adv. Math., Vol. 52, 1984, pp. 81-172). Zbl0537.16025MR86g:16039
  3. [3] M. AUSLANDER and I. REITEN, Modules determined by their composition factors (Illinois J. Math., Vol. 29, 1985, pp. 289-301). Zbl0539.16011MR86i:16032
  4. [4] K. BONGARTZ, A generalization of a theorem of M.Auslander (Bull. London Math. Soc., Vol. 21, 1989, pp. 255-256). Zbl0669.16018MR90b:16031
  5. [5] K. BONGARTZ, A geometric version of the Morita equivalence (J. Algebra, Vol. 139, 1991, pp. 159-179). Zbl0787.16011MR92f:16008
  6. [6] K. BONGARTZ, On degenerations and extensions of finite dimensional modules (accepted 1990 for publication in Adv.Math., but not yet appeared, preprint of 53 pages). Zbl0862.16007
  7. [7] K. BONGARTZ, Minimal singularities for representations of Dynkin quivers (to appear in Comm. Math. Helv., preprint of 24 pages, 1993). Zbl0832.16008
  8. [8] V. DLAB and C. M. RINGEL, Indecomposable representations of graphs and algebras (Memoirs Amer. Math. Soc., Vol. 173, 1976). Zbl0332.16015MR56 #5657
  9. [9] P. DONOVAN and M. R. FREISLICH, The representation theory of finite graphs and associated algebras (Carleton Lecture notes 5, Ottawa, 1973). Zbl0304.08006MR50 #9701
  10. [10] S. FRIEDLAND, Simultaneous similarity of matrices (Adv. Math., Vol. 50, 1983, pp. 189-265). Zbl0532.15009MR86b:14020
  11. [11] P. GABRIEL, The universal cover of a representation-finite algebra, (Springer Lecture Notes, Vol. 903, 1980, pp. 68-105). Zbl0481.16008MR83f:16036
  12. [12] P. GABRIEL, B. KELLER and A. V. ROITER, Representations of finite-dimensional algebras (Encycl. Math. Sc., Vol. 73, 1992, pp. 1-176). MR94h:16001b
  13. [13] G. KEMPKEN, Eine Darstellung des Kchers Ãk (Bonner Math. Schriften, Vol. 137, 1982, pp. 1-159). Zbl0498.14021MR84a:14022
  14. [14] G. HERMANN, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale (Math. Ann. Bd., Vol. 95, 1926, pp. 736-788). Zbl52.0127.01JFM52.0127.01
  15. [15] L. A. NAZAROVA, Representations of quivers of infinite type (Izvest. Akad. Nauk. SSR, Ser. Mat., Vol. 37, 1973, pp. 752-791). Zbl0343.15004MR49 #2785
  16. [16] C. RIEDTMANN, Degenerations for representations of quivers with relations (Ann. Sci. Ecole Norm. Sup., Vol. 4, 1986, pp. 275-301). Zbl0603.16025MR88b:16051
  17. [17] C. M. RINGEL, Tame algebras and quadratic forms (Lecture Notes in Math. 1099, Springer Verlag, 1984). Zbl0546.16013MR87f:16027
  18. [18] C. M. RINGEL, The rational invariants of tame quivers (Invent. Math., Vol. 58, 1980, pp. 217-239). Zbl0433.15009MR81f:16048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.