Regular projectively Anosov flows with compact leaves
Takeo Noda[1]
- [1] University of Tokyo, Graduate School of Mathematical Sciences, 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8914 (Japon)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 2, page 481-497
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNoda, Takeo. "Regular projectively Anosov flows with compact leaves." Annales de l’institut Fourier 54.2 (2004): 481-497. <http://eudml.org/doc/116119>.
@article{Noda2004,
abstract = {This paper concerns projectively Anosov flows $\phi ^t$ with smooth stable and unstable
foliations $\{\mathcal \{F\}\}^s$ and $\{\mathcal \{F\}\}^u$ on a Seifert manifold $M$. We show that if the
foliation $\{\mathcal \{F\}\}^s$ or $\{\mathcal \{F\}\}^u$ contains a compact leaf, then the flow $\phi ^t$ is
decomposed into a finite union of models which are defined on $\{T^2\} \times I$ and
bounded by compact leaves, and therefore the manifold $M$ is homeomorphic to the 3-torus.
In the proof, we also obtain a theorem which classifies codimension one foliations on
Seifert manifolds with compact leaves which are incompressible tori.},
affiliation = {University of Tokyo, Graduate School of Mathematical Sciences, 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8914 (Japon)},
author = {Noda, Takeo},
journal = {Annales de l’institut Fourier},
keywords = {projectively Anosov flows; stable foliations; bi-contact structures; Anosov foliation; regular projectively Anosov flow; stable foliation; compact leaf; Seifert manifold; bi-contact structure},
language = {eng},
number = {2},
pages = {481-497},
publisher = {Association des Annales de l'Institut Fourier},
title = {Regular projectively Anosov flows with compact leaves},
url = {http://eudml.org/doc/116119},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Noda, Takeo
TI - Regular projectively Anosov flows with compact leaves
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 2
SP - 481
EP - 497
AB - This paper concerns projectively Anosov flows $\phi ^t$ with smooth stable and unstable
foliations ${\mathcal {F}}^s$ and ${\mathcal {F}}^u$ on a Seifert manifold $M$. We show that if the
foliation ${\mathcal {F}}^s$ or ${\mathcal {F}}^u$ contains a compact leaf, then the flow $\phi ^t$ is
decomposed into a finite union of models which are defined on ${T^2} \times I$ and
bounded by compact leaves, and therefore the manifold $M$ is homeomorphic to the 3-torus.
In the proof, we also obtain a theorem which classifies codimension one foliations on
Seifert manifolds with compact leaves which are incompressible tori.
LA - eng
KW - projectively Anosov flows; stable foliations; bi-contact structures; Anosov foliation; regular projectively Anosov flow; stable foliation; compact leaf; Seifert manifold; bi-contact structure
UR - http://eudml.org/doc/116119
ER -
References
top- M. Asaoka, Classification of regular and non-degenerate projectively Anosov flows on three manifolds Zbl1111.37016
- T. Barbot, Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier 46 (1996), 1451-1517 Zbl0861.58028MR1427133
- M. Brittenham, Essential laminations in Seifert-fibered spaces, Topology 32 (1993), 61-85 Zbl0791.57013MR1204407
- M. Brittenham, Essential laminations in Seifert-fibered spaces: boundary behavior, Topology Appl. 95 (1999), 47-62 Zbl0937.57016MR1691931
- A. Denjoy, Sur les courbes définies par les équation différentielles à la surface du tore, J. de Math. (9) 11 (1932), 333-375 Zbl58.1124.04
- D. Eisenbud, U. Hirsch, W. Neumann, Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helv. 56 (1981), 638-660 Zbl0516.57015MR656217
- Y. Eliashberg, W.P. Thurston, Confoliations, (1998), Amer. Math. Soc. Zbl0893.53001
- S. Fenley, Anosov flows in 3-manifolds, Ann. of Math. (2) 139 (1994), 79-115 Zbl0796.58039MR1259365
- D. Gabai, U. Oertel, Essential laminations in -manifolds, Ann. of Math. (2) 130 (1989), 41-73 Zbl0685.57007MR1005607
- E. Ghys, Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier 42 (1992), 209-247 Zbl0759.58036MR1162561
- E. Ghys, Rigidité différentiable des groupes fuchsiens, I.H.É.S. Publ. Math. 78 (1993), 163-185 Zbl0812.58066MR1259430
- D. Hardorp, All compact orientable three manifolds admit total foliations, Memoirs Amer. Math. Soc. 233 (1980) Zbl0435.57005
- W. Jaco, Lectures on three-manifold topology, CBMS (1980), Amer. Math. Soc. Zbl0433.57001MR565450
- G. Levitt, Feuilletages des variétés de dimension qui sont des fibrés en cercles, Comment. Math. Helv. 53 (1978), 572-594 Zbl0393.57004MR511848
- S. Matsumoto, Foliations of Seifert fibered space over , Foliations (Tokyo, 1983) 5 (1985), 325-339, North-Holland Zbl0645.57020MR877337
- Y. Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier 45 (1995), 1407-1421 Zbl0834.53031MR1370752
- Y. Mitsumatsu, Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 75-125, World Sci. Publishing Zbl1008.57003MR1882766
- Y. Mitsumatsu, Projectively Anosov flows and bi-contact structures on Zbl0834.53031
- R. Moussu, R. Roussarie, Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.É.S. Publ. Math. 43 (1974), 142-168 Zbl0356.57018MR358810
- T. Noda, Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier 50 (2000), 1617-1647 Zbl1023.37014MR1800129
- T. Noda, T. Tsuboi, Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 403-419, World Sci. Publishing Zbl1002.37016MR1882782
- S.P. Novikov, Topology of foliations, Trudy Moskov. Mat. Ob. 14 (1965), 248-278 Zbl0247.57006MR200938
- P. Orlik, Seifert manifolds, 291 (1972), Springer Zbl0263.57001MR426001
- A.J. Schwarz, A generalization of a Poincaré-Bendixon theorem to closed two dimensional manifolds, Amer. J. Math. 85 (1963), 453-458 Zbl0116.06803MR155061
- P. Scott, The geometries of -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
- I. Tamura, Topology of foliations : an introduction. Transl. from the 1976 Japanese edition., 97 (1992), Amer. Math. Soc. Zbl0742.57001MR1151624
- W.P. Thurston, Foliations of 3-manifolds which are circle bundles, (1972)
- T. Tsuboi, Regular projectively Anosov flows on the Seifert fibered spaces Zbl1068.57027
- S.P. Novikov, Topology of foliations, Amer. Math. Soc. (1967), 286-304 Zbl0247.57006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.