Regular projectively Anosov flows with compact leaves

Takeo Noda[1]

  • [1] University of Tokyo, Graduate School of Mathematical Sciences, 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8914 (Japon)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 2, page 481-497
  • ISSN: 0373-0956

Abstract

top
This paper concerns projectively Anosov flows φ t with smooth stable and unstable foliations s and u on a Seifert manifold M . We show that if the foliation s or u contains a compact leaf, then the flow φ t is decomposed into a finite union of models which are defined on T 2 × I and bounded by compact leaves, and therefore the manifold M is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which are incompressible tori.

How to cite

top

Noda, Takeo. "Regular projectively Anosov flows with compact leaves." Annales de l’institut Fourier 54.2 (2004): 481-497. <http://eudml.org/doc/116119>.

@article{Noda2004,
abstract = {This paper concerns projectively Anosov flows $\phi ^t$ with smooth stable and unstable foliations $\{\mathcal \{F\}\}^s$ and $\{\mathcal \{F\}\}^u$ on a Seifert manifold $M$. We show that if the foliation $\{\mathcal \{F\}\}^s$ or $\{\mathcal \{F\}\}^u$ contains a compact leaf, then the flow $\phi ^t$ is decomposed into a finite union of models which are defined on $\{T^2\} \times I$ and bounded by compact leaves, and therefore the manifold $M$ is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which are incompressible tori.},
affiliation = {University of Tokyo, Graduate School of Mathematical Sciences, 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8914 (Japon)},
author = {Noda, Takeo},
journal = {Annales de l’institut Fourier},
keywords = {projectively Anosov flows; stable foliations; bi-contact structures; Anosov foliation; regular projectively Anosov flow; stable foliation; compact leaf; Seifert manifold; bi-contact structure},
language = {eng},
number = {2},
pages = {481-497},
publisher = {Association des Annales de l'Institut Fourier},
title = {Regular projectively Anosov flows with compact leaves},
url = {http://eudml.org/doc/116119},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Noda, Takeo
TI - Regular projectively Anosov flows with compact leaves
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 2
SP - 481
EP - 497
AB - This paper concerns projectively Anosov flows $\phi ^t$ with smooth stable and unstable foliations ${\mathcal {F}}^s$ and ${\mathcal {F}}^u$ on a Seifert manifold $M$. We show that if the foliation ${\mathcal {F}}^s$ or ${\mathcal {F}}^u$ contains a compact leaf, then the flow $\phi ^t$ is decomposed into a finite union of models which are defined on ${T^2} \times I$ and bounded by compact leaves, and therefore the manifold $M$ is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which are incompressible tori.
LA - eng
KW - projectively Anosov flows; stable foliations; bi-contact structures; Anosov foliation; regular projectively Anosov flow; stable foliation; compact leaf; Seifert manifold; bi-contact structure
UR - http://eudml.org/doc/116119
ER -

References

top
  1. M. Asaoka, Classification of regular and non-degenerate projectively Anosov flows on three manifolds Zbl1111.37016
  2. T. Barbot, Flots d'Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst. Fourier 46 (1996), 1451-1517 Zbl0861.58028MR1427133
  3. M. Brittenham, Essential laminations in Seifert-fibered spaces, Topology 32 (1993), 61-85 Zbl0791.57013MR1204407
  4. M. Brittenham, Essential laminations in Seifert-fibered spaces: boundary behavior, Topology Appl. 95 (1999), 47-62 Zbl0937.57016MR1691931
  5. A. Denjoy, Sur les courbes définies par les équation différentielles à la surface du tore, J. de Math. (9) 11 (1932), 333-375 Zbl58.1124.04
  6. D. Eisenbud, U. Hirsch, W. Neumann, Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helv. 56 (1981), 638-660 Zbl0516.57015MR656217
  7. Y. Eliashberg, W.P. Thurston, Confoliations, (1998), Amer. Math. Soc. Zbl0893.53001
  8. S. Fenley, Anosov flows in 3-manifolds, Ann. of Math. (2) 139 (1994), 79-115 Zbl0796.58039MR1259365
  9. D. Gabai, U. Oertel, Essential laminations in 3 -manifolds, Ann. of Math. (2) 130 (1989), 41-73 Zbl0685.57007MR1005607
  10. E. Ghys, Déformations de flots d'Anosov et de groupes fuchsiens, Ann. Inst. Fourier 42 (1992), 209-247 Zbl0759.58036MR1162561
  11. E. Ghys, Rigidité différentiable des groupes fuchsiens, I.H.É.S. Publ. Math. 78 (1993), 163-185 Zbl0812.58066MR1259430
  12. D. Hardorp, All compact orientable three manifolds admit total foliations, Memoirs Amer. Math. Soc. 233 (1980) Zbl0435.57005
  13. W. Jaco, Lectures on three-manifold topology, CBMS (1980), Amer. Math. Soc. Zbl0433.57001MR565450
  14. G. Levitt, Feuilletages des variétés de dimension 3 qui sont des fibrés en cercles, Comment. Math. Helv. 53 (1978), 572-594 Zbl0393.57004MR511848
  15. S. Matsumoto, Foliations of Seifert fibered space over S 2 , Foliations (Tokyo, 1983) 5 (1985), 325-339, North-Holland Zbl0645.57020MR877337
  16. Y. Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier 45 (1995), 1407-1421 Zbl0834.53031MR1370752
  17. Y. Mitsumatsu, Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 75-125, World Sci. Publishing Zbl1008.57003MR1882766
  18. Y. Mitsumatsu, Projectively Anosov flows and bi-contact structures on Zbl0834.53031
  19. R. Moussu, R. Roussarie, Relations de conjugaison et de cobordisme entre certains feuilletages, I.H.É.S. Publ. Math. 43 (1974), 142-168 Zbl0356.57018MR358810
  20. T. Noda, Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier 50 (2000), 1617-1647 Zbl1023.37014MR1800129
  21. T. Noda, T. Tsuboi, Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 403-419, World Sci. Publishing Zbl1002.37016MR1882782
  22. S.P. Novikov, Topology of foliations, Trudy Moskov. Mat. Ob. 14 (1965), 248-278 Zbl0247.57006MR200938
  23. P. Orlik, Seifert manifolds, 291 (1972), Springer Zbl0263.57001MR426001
  24. A.J. Schwarz, A generalization of a Poincaré-Bendixon theorem to closed two dimensional manifolds, Amer. J. Math. 85 (1963), 453-458 Zbl0116.06803MR155061
  25. P. Scott, The geometries of 3 -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
  26. I. Tamura, Topology of foliations : an introduction. Transl. from the 1976 Japanese edition., 97 (1992), Amer. Math. Soc. Zbl0742.57001MR1151624
  27. W.P. Thurston, Foliations of 3-manifolds which are circle bundles, (1972) 
  28. T. Tsuboi, Regular projectively Anosov flows on the Seifert fibered spaces Zbl1068.57027
  29. S.P. Novikov, Topology of foliations, Amer. Math. Soc. (1967), 286-304 Zbl0247.57006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.