Regular projectively Anosov flows on three-dimensional manifolds

Masayuki Asaoka[1]

  • [1] Kyoto University Department of Mathematics Kitashirakawa Oiwakecho, Sakyo-ku 606-8502 Kyoto (Japan)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 5, page 1649-1684
  • ISSN: 0373-0956

Abstract

top
We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of T 2 × I -models. We also apply our method to rigidity problems of some group actions.

How to cite

top

Asaoka, Masayuki. "Regular projectively Anosov flows on three-dimensional manifolds." Annales de l’institut Fourier 60.5 (2010): 1649-1684. <http://eudml.org/doc/116318>.

@article{Asaoka2010,
abstract = {We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of $T^2 \times I$-models. We also apply our method to rigidity problems of some group actions.},
affiliation = {Kyoto University Department of Mathematics Kitashirakawa Oiwakecho, Sakyo-ku 606-8502 Kyoto (Japan)},
author = {Asaoka, Masayuki},
journal = {Annales de l’institut Fourier},
keywords = {Projectively Anosov flows; bi-contact structures; projectively Anosov flows},
language = {eng},
number = {5},
pages = {1649-1684},
publisher = {Association des Annales de l’institut Fourier},
title = {Regular projectively Anosov flows on three-dimensional manifolds},
url = {http://eudml.org/doc/116318},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Asaoka, Masayuki
TI - Regular projectively Anosov flows on three-dimensional manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1649
EP - 1684
AB - We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of $T^2 \times I$-models. We also apply our method to rigidity problems of some group actions.
LA - eng
KW - Projectively Anosov flows; bi-contact structures; projectively Anosov flows
UR - http://eudml.org/doc/116318
ER -

References

top
  1. A. Arroyo, F. Rodriguez Hertz, Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 805-841 Zbl1045.37006MR1995503
  2. M. Asaoka, Non-homogeneous locally free actions of the affine group Zbl1288.57018
  3. M. Asaoka, A classification of three dimensional regular projectively Anosov flows, Proc. Japan Acad., Ser. A 80 (2004), 194-197 Zbl1160.37337MR2112247
  4. M. Asaoka, Classification of regular and non-degenerate projectively Anosov diffeomorphisms on three dimensional manifolds, J. Math. Kyoto Univ. 46 (2006), 349-356 Zbl1111.37016MR2284347
  5. M. Asaoka, Codimension-one foliations with a transversely contracting flow, Foliations 2005 (2006), 21-36, World Sci. Publ., Hackensack, NJ Zbl1222.37026MR2284774
  6. T. Barbot, Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995), 247-270 Zbl0826.58025MR1332403
  7. C. Bonatti, L. J. Díaz, M. Viana, Dynamics beyond uniform hyperbolicity, 102 (2005), Springer-Verlag, Berlin Zbl1060.37020MR2105774
  8. J. Cantwell, L. Conlon, Reeb stability for noncompact leaves in foliated 3-manifolds, Proc. Amer. Math. Soc. 33 (1981), 408-410 Zbl0504.57012MR624942
  9. J. Cantwell, L. Conlon, The theory of levels, Index theory of elliptic operators, foliations, and operator algebras (New Orleans, LA/Indianapolis, IN, 1986) 70 (1988), 1-10, Amer. Math. Soc., Providence, RI Zbl0656.57016MR948686
  10. J. Cantwell, L. Conlon, Endsets of exceptional leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 225-261, World Sci. Publ., River Edge, NJ Zbl1011.57009MR1882772
  11. W. de Melo, S. van Strien, One-dimensional dynamics, 25 (1993), Springer-Verlag, Berlin Zbl0791.58003MR1239171
  12. C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985) 160 (1987), 59-89, Longman Sci. Tech., Harlow Zbl0631.58016MR907891
  13. Y. M. Eliashberg, W. P. Thurston, Confoliations, 13 (1998), American Mathematical Society, Providence, RI Zbl0893.53001MR1483314
  14. E. Ghys, Actions localement libres du groupe affine, Invent. Math. 82 (1985), 479-526 Zbl0577.57010MR811548
  15. E. Ghys, Rigidité différentiable des groupes fuchiens, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 163-185 Zbl0812.58066MR1259430
  16. E. Ghys, V. Sergiescu, Stabilité et conjugaison différentiable pour certains feuilletages, Topology 19 (1980), 179-197 Zbl0478.57017MR572582
  17. A. J. Homburg, Piecewise smooth interval maps with non-vanishing derivative, Ergodic Theory Dynam. Systems 20 (2000), 749-773 Zbl0963.37032MR1764926
  18. R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys. 100 (1985), 495-524 Zbl0583.58016MR806250
  19. Y. Mitsumatsu, Anosov flows and non-stein symplectic manifolds, Ann. Inst. Fourier 45 (1995), 1407-1421 Zbl0834.53031MR1370752
  20. Y. Mitsumatsu, Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 75-125, World Sci. Publ., River Edge, NJ Zbl1008.57003MR1882766
  21. R. Moussu, R. Roussarie, Relations de conjugaison et de cobordisme entre certains feuilletages, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 142-168 Zbl0356.57018MR358810
  22. S. Newhouse, J. Palis, Hyperbolic nonwandering sets on two-dimensional manifolds, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) (1973), 293-301, Academic Press, New York Zbl0279.58010MR339284
  23. T. Noda, Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier 50 (2000), 1617-1647 Zbl1023.37014MR1800129
  24. T. Noda, Regular projectively Anosov flows with compact leaves, Ann. Inst. Fourier 54 (2004), 353-363 Zbl1058.57021MR2074426
  25. T. Noda, T. Tsuboi, Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 403-419, World Sci. Publ., River Edge, NJ Zbl1002.37016MR1882782
  26. M. E. Ratner, Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki 6 (1969), 693-704 Zbl0198.56804MR260977
  27. M. Shub, Global stability of dynamical systems, (1987), Springer-Verlag, New York Zbl0606.58003MR869255
  28. T. Tsuboi, Regular projectively Anosov flows on the Seifert fibered 3-manifolds, J. Math. Soc. Japan 56 (2004), 1233-1253 Zbl1068.57027MR2092947

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.