Regular projectively Anosov flows on three-dimensional manifolds
- [1] Kyoto University Department of Mathematics Kitashirakawa Oiwakecho, Sakyo-ku 606-8502 Kyoto (Japan)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 5, page 1649-1684
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAsaoka, Masayuki. "Regular projectively Anosov flows on three-dimensional manifolds." Annales de l’institut Fourier 60.5 (2010): 1649-1684. <http://eudml.org/doc/116318>.
@article{Asaoka2010,
abstract = {We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of $T^2 \times I$-models. We also apply our method to rigidity problems of some group actions.},
affiliation = {Kyoto University Department of Mathematics Kitashirakawa Oiwakecho, Sakyo-ku 606-8502 Kyoto (Japan)},
author = {Asaoka, Masayuki},
journal = {Annales de l’institut Fourier},
keywords = {Projectively Anosov flows; bi-contact structures; projectively Anosov flows},
language = {eng},
number = {5},
pages = {1649-1684},
publisher = {Association des Annales de l’institut Fourier},
title = {Regular projectively Anosov flows on three-dimensional manifolds},
url = {http://eudml.org/doc/116318},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Asaoka, Masayuki
TI - Regular projectively Anosov flows on three-dimensional manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 5
SP - 1649
EP - 1684
AB - We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of $T^2 \times I$-models. We also apply our method to rigidity problems of some group actions.
LA - eng
KW - Projectively Anosov flows; bi-contact structures; projectively Anosov flows
UR - http://eudml.org/doc/116318
ER -
References
top- A. Arroyo, F. Rodriguez Hertz, Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 805-841 Zbl1045.37006MR1995503
- M. Asaoka, Non-homogeneous locally free actions of the affine group Zbl1288.57018
- M. Asaoka, A classification of three dimensional regular projectively Anosov flows, Proc. Japan Acad., Ser. A 80 (2004), 194-197 Zbl1160.37337MR2112247
- M. Asaoka, Classification of regular and non-degenerate projectively Anosov diffeomorphisms on three dimensional manifolds, J. Math. Kyoto Univ. 46 (2006), 349-356 Zbl1111.37016MR2284347
- M. Asaoka, Codimension-one foliations with a transversely contracting flow, Foliations 2005 (2006), 21-36, World Sci. Publ., Hackensack, NJ Zbl1222.37026MR2284774
- T. Barbot, Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995), 247-270 Zbl0826.58025MR1332403
- C. Bonatti, L. J. Díaz, M. Viana, Dynamics beyond uniform hyperbolicity, 102 (2005), Springer-Verlag, Berlin Zbl1060.37020MR2105774
- J. Cantwell, L. Conlon, Reeb stability for noncompact leaves in foliated 3-manifolds, Proc. Amer. Math. Soc. 33 (1981), 408-410 Zbl0504.57012MR624942
- J. Cantwell, L. Conlon, The theory of levels, Index theory of elliptic operators, foliations, and operator algebras (New Orleans, LA/Indianapolis, IN, 1986) 70 (1988), 1-10, Amer. Math. Soc., Providence, RI Zbl0656.57016MR948686
- J. Cantwell, L. Conlon, Endsets of exceptional leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 225-261, World Sci. Publ., River Edge, NJ Zbl1011.57009MR1882772
- W. de Melo, S. van Strien, One-dimensional dynamics, 25 (1993), Springer-Verlag, Berlin Zbl0791.58003MR1239171
- C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985) 160 (1987), 59-89, Longman Sci. Tech., Harlow Zbl0631.58016MR907891
- Y. M. Eliashberg, W. P. Thurston, Confoliations, 13 (1998), American Mathematical Society, Providence, RI Zbl0893.53001MR1483314
- E. Ghys, Actions localement libres du groupe affine, Invent. Math. 82 (1985), 479-526 Zbl0577.57010MR811548
- E. Ghys, Rigidité différentiable des groupes fuchiens, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 163-185 Zbl0812.58066MR1259430
- E. Ghys, V. Sergiescu, Stabilité et conjugaison différentiable pour certains feuilletages, Topology 19 (1980), 179-197 Zbl0478.57017MR572582
- A. J. Homburg, Piecewise smooth interval maps with non-vanishing derivative, Ergodic Theory Dynam. Systems 20 (2000), 749-773 Zbl0963.37032MR1764926
- R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys. 100 (1985), 495-524 Zbl0583.58016MR806250
- Y. Mitsumatsu, Anosov flows and non-stein symplectic manifolds, Ann. Inst. Fourier 45 (1995), 1407-1421 Zbl0834.53031MR1370752
- Y. Mitsumatsu, Foliations and contact structures on 3-manifolds, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 75-125, World Sci. Publ., River Edge, NJ Zbl1008.57003MR1882766
- R. Moussu, R. Roussarie, Relations de conjugaison et de cobordisme entre certains feuilletages, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 142-168 Zbl0356.57018MR358810
- S. Newhouse, J. Palis, Hyperbolic nonwandering sets on two-dimensional manifolds, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) (1973), 293-301, Academic Press, New York Zbl0279.58010MR339284
- T. Noda, Projectively Anosov flows with differentiable (un)stable foliations, Ann. Inst. Fourier 50 (2000), 1617-1647 Zbl1023.37014MR1800129
- T. Noda, Regular projectively Anosov flows with compact leaves, Ann. Inst. Fourier 54 (2004), 353-363 Zbl1058.57021MR2074426
- T. Noda, T. Tsuboi, Regular projectively Anosov flows without compact leaves, Foliations: geometry and dynamics (Warsaw, 2000) (2002), 403-419, World Sci. Publ., River Edge, NJ Zbl1002.37016MR1882782
- M. E. Ratner, Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki 6 (1969), 693-704 Zbl0198.56804MR260977
- M. Shub, Global stability of dynamical systems, (1987), Springer-Verlag, New York Zbl0606.58003MR869255
- T. Tsuboi, Regular projectively Anosov flows on the Seifert fibered 3-manifolds, J. Math. Soc. Japan 56 (2004), 1233-1253 Zbl1068.57027MR2092947
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.