Orbifolds, special varieties and classification theory: an appendix

Frédéric Campana[1]

  • [1] Université Nancy 1, département de mathématiques, BP 239, 54506 Vandoeuvre-les-Nancy (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 3, page 631-665
  • ISSN: 0373-0956

Abstract

top
For any compact Kähler manifold X and for any equivalence relation generated by a symmetric binary relation with compact analytic graph in X × X , the existence of a meromorphic quotient is known from Inv. Math. 63 (1981). We give here a simplified and detailed proof of the existence of such quotients, following the approach of that paper. These quotients are used in one of the two constructions of the core of X given in the previous paper of this fascicule, as well as in many other questions.

How to cite

top

Campana, Frédéric. "Orbifolds, special varieties and classification theory: an appendix." Annales de l’institut Fourier 54.3 (2004): 631-665. <http://eudml.org/doc/116121>.

@article{Campana2004,
abstract = {For any compact Kähler manifold $X$ and for any equivalence relation generated by a symmetric binary relation with compact analytic graph in $X \times X$, the existence of a meromorphic quotient is known from Inv. Math. 63 (1981). We give here a simplified and detailed proof of the existence of such quotients, following the approach of that paper. These quotients are used in one of the two constructions of the core of $X$ given in the previous paper of this fascicule, as well as in many other questions.},
affiliation = {Université Nancy 1, département de mathématiques, BP 239, 54506 Vandoeuvre-les-Nancy (France)},
author = {Campana, Frédéric},
journal = {Annales de l’institut Fourier},
keywords = {canonical bundle; Kodaira dimension; orbifold; Kähler manifold; rational connectedness; fibration; Albanese map; Kobayashi pseudometric; rational point; Kähler manifolds; fibrations; complex analytic spaces; meromorphic quotients; Zariski regularity; stability},
language = {eng},
number = {3},
pages = {631-665},
publisher = {Association des Annales de l'Institut Fourier},
title = {Orbifolds, special varieties and classification theory: an appendix},
url = {http://eudml.org/doc/116121},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Campana, Frédéric
TI - Orbifolds, special varieties and classification theory: an appendix
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 631
EP - 665
AB - For any compact Kähler manifold $X$ and for any equivalence relation generated by a symmetric binary relation with compact analytic graph in $X \times X$, the existence of a meromorphic quotient is known from Inv. Math. 63 (1981). We give here a simplified and detailed proof of the existence of such quotients, following the approach of that paper. These quotients are used in one of the two constructions of the core of $X$ given in the previous paper of this fascicule, as well as in many other questions.
LA - eng
KW - canonical bundle; Kodaira dimension; orbifold; Kähler manifold; rational connectedness; fibration; Albanese map; Kobayashi pseudometric; rational point; Kähler manifolds; fibrations; complex analytic spaces; meromorphic quotients; Zariski regularity; stability
UR - http://eudml.org/doc/116121
ER -

References

top
  1. D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique de dimension finie, LNM 482 (1975), 1-158 Zbl0331.32008MR399503
  2. D. Barlet, Majoration du volume des cycles, et forme géométrique du théorème d'applatissement, C.R.A.S. 288 (1979), 29-31 Zbl0457.32015MR522012
  3. J. Bingener, H. Flenner, On the fibers of analytic mappings, Complex Analysis and Geometry (1993), 45-102, Plenum Press Zbl0792.13005
  4. F. Campana, Algébricité et Compacité dans l'espace des Cycles, Math. Ann. 251 (1980), 7-18 Zbl0445.32021MR583821
  5. F. Campana, Réduction algébrique d'un morphisme faiblement Kählérien propre et applications, Math. Ann. 256 (1980), 157-189 Zbl0461.32010MR620706
  6. F. Campana, Coréduction algébrique d'un espace analytique faiblement Kählérien compact, Inv. Math. 63 (1981), 187-223 Zbl0436.32024MR610537
  7. F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sc. ENS. 25 (1992), 539-545 Zbl0783.14022MR1191735
  8. F. Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. S.M.F 122 (1994), 255-284 Zbl0810.32013MR1273904
  9. F. Campana, 𝒢 -connectedness of compact Kähler manifolds I, Contemp. Math. 241 (1999), 85-97 Zbl0965.32021MR1718138
  10. F. Campana, Orbifolds, Special Varieties and Classification Theory Zbl1062.14014
  11. F. Campana, Special Varieties and Classification Theory. An overview, Acta Applicandae Mathematicae 75 (2003), 29-49 Zbl1059.14047MR1975557
  12. F. Campana, T. Peternell, Cycle Spaces, Several Complex Variables VII Chapter VIII (1994), 319-349, Springer Verlag Zbl0811.32020
  13. O. Debarre, Higher-Dimensional Algebraic Geometry, (2001), Springer Verlag Zbl0978.14001MR1841091
  14. A. Höring, Geometric Quotients, (Septembre 2003) 
  15. B. Kaup, L. Kaup, Holomorphic Functions of Several Complex Variables, (1983), De Gruyter Zbl0528.32001
  16. J. Kollár, Rational curves on algebraic varieties, 32 (1996), Springer-Verlag Zbl0877.14012MR1440180
  17. J. Kollár, Y. Miyaoka, S. Mori, Rational Connectedness and Boundedness of Fano Manifolds, J. Diff. Geom. 36 (1992), 429-448 Zbl0759.14032MR1189503
  18. D. Liebermann, Compactness of the Chow Scheme : Applications to automorphisms and deformations of Kähler Manifolds, 670 (1975), 140-186 Zbl0391.32018
  19. Séminaire de Géométrie Analytique. Deuxième partie, (1982) MR725688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.