Orbifolds, special varieties and classification theory: an appendix
- [1] Université Nancy 1, département de mathématiques, BP 239, 54506 Vandoeuvre-les-Nancy (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 3, page 631-665
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCampana, Frédéric. "Orbifolds, special varieties and classification theory: an appendix." Annales de l’institut Fourier 54.3 (2004): 631-665. <http://eudml.org/doc/116121>.
@article{Campana2004,
abstract = {For any compact Kähler manifold $X$ and for any equivalence relation generated by a
symmetric binary relation with compact analytic graph in $X \times X$, the existence of a
meromorphic quotient is known from Inv. Math. 63 (1981). We give here a simplified
and detailed proof of the existence of such quotients, following the approach of that
paper. These quotients are used in one of the two constructions of the core of $X$ given
in the previous paper of this fascicule, as well as in many other questions.},
affiliation = {Université Nancy 1, département de mathématiques, BP 239, 54506 Vandoeuvre-les-Nancy (France)},
author = {Campana, Frédéric},
journal = {Annales de l’institut Fourier},
keywords = {canonical bundle; Kodaira dimension; orbifold; Kähler manifold; rational connectedness; fibration; Albanese map; Kobayashi pseudometric; rational point; Kähler manifolds; fibrations; complex analytic spaces; meromorphic quotients; Zariski regularity; stability},
language = {eng},
number = {3},
pages = {631-665},
publisher = {Association des Annales de l'Institut Fourier},
title = {Orbifolds, special varieties and classification theory: an appendix},
url = {http://eudml.org/doc/116121},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Campana, Frédéric
TI - Orbifolds, special varieties and classification theory: an appendix
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 631
EP - 665
AB - For any compact Kähler manifold $X$ and for any equivalence relation generated by a
symmetric binary relation with compact analytic graph in $X \times X$, the existence of a
meromorphic quotient is known from Inv. Math. 63 (1981). We give here a simplified
and detailed proof of the existence of such quotients, following the approach of that
paper. These quotients are used in one of the two constructions of the core of $X$ given
in the previous paper of this fascicule, as well as in many other questions.
LA - eng
KW - canonical bundle; Kodaira dimension; orbifold; Kähler manifold; rational connectedness; fibration; Albanese map; Kobayashi pseudometric; rational point; Kähler manifolds; fibrations; complex analytic spaces; meromorphic quotients; Zariski regularity; stability
UR - http://eudml.org/doc/116121
ER -
References
top- D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique de dimension finie, LNM 482 (1975), 1-158 Zbl0331.32008MR399503
- D. Barlet, Majoration du volume des cycles, et forme géométrique du théorème d'applatissement, C.R.A.S. 288 (1979), 29-31 Zbl0457.32015MR522012
- J. Bingener, H. Flenner, On the fibers of analytic mappings, Complex Analysis and Geometry (1993), 45-102, Plenum Press Zbl0792.13005
- F. Campana, Algébricité et Compacité dans l'espace des Cycles, Math. Ann. 251 (1980), 7-18 Zbl0445.32021MR583821
- F. Campana, Réduction algébrique d'un morphisme faiblement Kählérien propre et applications, Math. Ann. 256 (1980), 157-189 Zbl0461.32010MR620706
- F. Campana, Coréduction algébrique d'un espace analytique faiblement Kählérien compact, Inv. Math. 63 (1981), 187-223 Zbl0436.32024MR610537
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sc. ENS. 25 (1992), 539-545 Zbl0783.14022MR1191735
- F. Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. S.M.F 122 (1994), 255-284 Zbl0810.32013MR1273904
- F. Campana, -connectedness of compact Kähler manifolds I, Contemp. Math. 241 (1999), 85-97 Zbl0965.32021MR1718138
- F. Campana, Orbifolds, Special Varieties and Classification Theory Zbl1062.14014
- F. Campana, Special Varieties and Classification Theory. An overview, Acta Applicandae Mathematicae 75 (2003), 29-49 Zbl1059.14047MR1975557
- F. Campana, T. Peternell, Cycle Spaces, Several Complex Variables VII Chapter VIII (1994), 319-349, Springer Verlag Zbl0811.32020
- O. Debarre, Higher-Dimensional Algebraic Geometry, (2001), Springer Verlag Zbl0978.14001MR1841091
- A. Höring, Geometric Quotients, (Septembre 2003)
- B. Kaup, L. Kaup, Holomorphic Functions of Several Complex Variables, (1983), De Gruyter Zbl0528.32001
- J. Kollár, Rational curves on algebraic varieties, 32 (1996), Springer-Verlag Zbl0877.14012MR1440180
- J. Kollár, Y. Miyaoka, S. Mori, Rational Connectedness and Boundedness of Fano Manifolds, J. Diff. Geom. 36 (1992), 429-448 Zbl0759.14032MR1189503
- D. Liebermann, Compactness of the Chow Scheme : Applications to automorphisms and deformations of Kähler Manifolds, 670 (1975), 140-186 Zbl0391.32018
- Séminaire de Géométrie Analytique. Deuxième partie, (1982) MR725688
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.