Application of an integral formula to CR-submanifolds of complex hyperbolic space.
The classification of class VII surfaces is a very difficult classical problem in complex geometry. It is considered by experts to be the most important gap in the Enriques-Kodaira classification table for complex surfaces. The standard conjecture concerning this problem states that any minimal class VII surface with b₂ > 0 has b₂ curves. By the results of [Ka1]-[Ka3], [Na1]-[Na3], [DOT], [OT] this conjecture (if true) would solve the classification problem completely. We explain a new approach...
In 1981 J. Noguchi proved that in a logarithmic algebraic manifold, having logarithmic irregularity strictly bigger than its dimension, any entire curve is algebraically degenerate.In the present paper we are interested in the case of manifolds having logarithmic irregularity equal to its dimension. We restrict our attention to Brody curves, for which we resolve the problem completely in dimension 2: in a logarithmic surface with logarithmic irregularity and logarithmic Kodaira dimension , any...
This article gives a description, by means of functorial intrinsic fibrations, of the geometric structure (and conjecturally also of the Kobayashi pseudometric, as well as of the arithmetic in the projective case) of compact Kähler manifolds. We first define special manifolds as being the compact Kähler manifolds with no meromorphic map onto an orbifold of general type, the orbifold structure on the base being given by the divisor of multiple fibres. We next show that rationally connected Kähler...
For any compact Kähler manifold and for any equivalence relation generated by a symmetric binary relation with compact analytic graph in , the existence of a meromorphic quotient is known from Inv. Math. 63 (1981). We give here a simplified and detailed proof of the existence of such quotients, following the approach of that paper. These quotients are used in one of the two constructions of the core of given in the previous paper of this fascicule, as well as in many other questions.
In this paper we give the topological classification of real primary Kodaira surfaces and we describe in detail the structure of the corresponding moduli space. Moreover, we use the notion of the orbifold fundamental group of a real variety, which was also the main tool in the classification of real hyperelliptic surfaces achieved in [10]. Our first result is that if (S,sygma) is a real primary Kodaira surface, then the differentiable tupe of the pair (S,sygma) is completely determined by the orbifold...