Exponentially long time stability for non-linearizable analytic germs of .
- [1] Scuola Normale Superiore, piazza dei Cavalieri 7, 56126 Pisa (Italie)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 4, page 989-1004
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCarletti, Timoteo. "Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.." Annales de l’institut Fourier 54.4 (2004): 989-1004. <http://eudml.org/doc/116139>.
@article{Carletti2004,
abstract = {We study the Siegel-Schröder center problem on the linearization of analytic germs of
diffeomorphisms in several complex variables, in the Gevrey-$s$, $s>0$ category. We
introduce a new arithmetical condition of Bruno type on the linear part of the given
germ, which ensures the existence of a Gevrey-$s$ formal linearization. We use this fact
to prove the effective stability, i.e. stability for finite but long time, of
neighborhoods of the origin, for the analytic germ.},
affiliation = {Scuola Normale Superiore, piazza dei Cavalieri 7, 56126 Pisa (Italie)},
author = {Carletti, Timoteo},
journal = {Annales de l’institut Fourier},
keywords = {Siegel center problem; Gevrey class; Bruno condition; effective stability; Nekoroshev like estimates; Nekoroshev-like estimates},
language = {eng},
number = {4},
pages = {989-1004},
publisher = {Association des Annales de l'Institut Fourier},
title = {Exponentially long time stability for non-linearizable analytic germs of $(\{\mathbb \{C\}\}^n,0)$.},
url = {http://eudml.org/doc/116139},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Carletti, Timoteo
TI - Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 989
EP - 1004
AB - We study the Siegel-Schröder center problem on the linearization of analytic germs of
diffeomorphisms in several complex variables, in the Gevrey-$s$, $s>0$ category. We
introduce a new arithmetical condition of Bruno type on the linear part of the given
germ, which ensures the existence of a Gevrey-$s$ formal linearization. We use this fact
to prove the effective stability, i.e. stability for finite but long time, of
neighborhoods of the origin, for the analytic germ.
LA - eng
KW - Siegel center problem; Gevrey class; Bruno condition; effective stability; Nekoroshev like estimates; Nekoroshev-like estimates
UR - http://eudml.org/doc/116139
ER -
References
top- W. Balser, From Divergent Power Series to Analytic Functions. Theory and Applications of Multisummable Power Series, 1582 (1994), Springer Zbl0810.34046MR1317343
- A.D. Bruno, Analytical form of differential equations, Transactions Moscow Math.Soc 25 (1971), 131-288 Zbl0272.34018
- T. Carletti, The Lagrange inversion formula on non--Archimedean fields. Non--Analytical Form of Differential and Finite Difference Equations, DCDS Séries A 9 (2003), 835-858 Zbl1036.37017MR1903046
- T. Carletti, S. Marmi, Linearization of analytic and non–analytic germs of diffeomorphisms of , Bull. Soc. Math. de France 128 (2000), 69-85 Zbl0997.37017MR1765828
- A. Giorgilli, A. Fontich, L. Galgani, C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point with an application to the restricted three body problem, J. of Differential Equations 77 (1989), 167-198 Zbl0675.70027MR980547
- A. Gray, A fixed point theorem for small divisors problems, J. Diff. Eq 18 (1975), 346-365 MR375389
- G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Oxford Univ. Press Zbl0058.03301MR67125
- M.R. Herman, Recent Results and Some Open Questions on Siegel’s Linearization Theorem of Germs of Complex Analytic Diffeomorphisms of near a Fixed Point, Proc. VIII Int. Conf. Math. Phys. (1986), 138-184, World Scientific
- G. Koenigs, Recherches sur les équations fonctionelles, Ann. Sc. E.N.S. 1 (1884), 3-41 MR1508749
- S. Marmi, P. Moussa, J.-C. Yoccoz, The Bruno functions and their regularity properties, Communications in Mathematical Physics 186 (1997), 265-293 Zbl0947.30018MR1462766
- N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Usp. Math. Nauk 32 (1977), 5-66 Zbl0389.70028MR501140
- R. Pérez--Marco, Sur les dynamiques holomorphes non linéarisables et une conjecture de V.I. Arnold, Ann. scient. Éc. Norm. Sup. (4) 26 (1993), 565-644 Zbl0812.58051MR1241470
- R. Pérez--Marco, Sur la dynamique des germes de difféomorphismes de et des difféomorphismes analytiques du cercle, (1990)
- H. Poincaré, Œuvres, tome I (1917), Gauthier--Villars, Paris
- J.--P. Ramis, Séries divergentes et Théorie asymptotiques, Publ. Journées X--UPS (1991), 1-67
- C.L. Siegel, Iteration of analytic functions, Annals of Mathematics 43 (1942), 807-812 Zbl0061.14904MR7044
- S. Sternberg, Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech 10 (1961), 451-474 Zbl0131.26802MR133400
- J.-C. Yoccoz, Théorème de Siegel, polynômes quadratiques et nombres de Bruno, Astérisque 231 (1995), 3-88 MR1367353
- A.D. Bruno, Analytical form of differential equations, Transactions Moscow Math. Soc. 26 (1972), 199-239 Zbl0269.34006
- N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems., Russ. Math. Surv. 32 (1977), 1-65 Zbl0389.70028MR501140
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.