Exponentially long time stability for non-linearizable analytic germs of ( n , 0 ) .

Timoteo Carletti[1]

  • [1] Scuola Normale Superiore, piazza dei Cavalieri 7, 56126 Pisa (Italie)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 4, page 989-1004
  • ISSN: 0373-0956

Abstract

top
We study the Siegel-Schröder center problem on the linearization of analytic germs of diffeomorphisms in several complex variables, in the Gevrey- s , s > 0 category. We introduce a new arithmetical condition of Bruno type on the linear part of the given germ, which ensures the existence of a Gevrey- s formal linearization. We use this fact to prove the effective stability, i.e. stability for finite but long time, of neighborhoods of the origin, for the analytic germ.

How to cite

top

Carletti, Timoteo. "Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.." Annales de l’institut Fourier 54.4 (2004): 989-1004. <http://eudml.org/doc/116139>.

@article{Carletti2004,
abstract = {We study the Siegel-Schröder center problem on the linearization of analytic germs of diffeomorphisms in several complex variables, in the Gevrey-$s$, $s&gt;0$ category. We introduce a new arithmetical condition of Bruno type on the linear part of the given germ, which ensures the existence of a Gevrey-$s$ formal linearization. We use this fact to prove the effective stability, i.e. stability for finite but long time, of neighborhoods of the origin, for the analytic germ.},
affiliation = {Scuola Normale Superiore, piazza dei Cavalieri 7, 56126 Pisa (Italie)},
author = {Carletti, Timoteo},
journal = {Annales de l’institut Fourier},
keywords = {Siegel center problem; Gevrey class; Bruno condition; effective stability; Nekoroshev like estimates; Nekoroshev-like estimates},
language = {eng},
number = {4},
pages = {989-1004},
publisher = {Association des Annales de l'Institut Fourier},
title = {Exponentially long time stability for non-linearizable analytic germs of $(\{\mathbb \{C\}\}^n,0)$.},
url = {http://eudml.org/doc/116139},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Carletti, Timoteo
TI - Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 989
EP - 1004
AB - We study the Siegel-Schröder center problem on the linearization of analytic germs of diffeomorphisms in several complex variables, in the Gevrey-$s$, $s&gt;0$ category. We introduce a new arithmetical condition of Bruno type on the linear part of the given germ, which ensures the existence of a Gevrey-$s$ formal linearization. We use this fact to prove the effective stability, i.e. stability for finite but long time, of neighborhoods of the origin, for the analytic germ.
LA - eng
KW - Siegel center problem; Gevrey class; Bruno condition; effective stability; Nekoroshev like estimates; Nekoroshev-like estimates
UR - http://eudml.org/doc/116139
ER -

References

top
  1. W. Balser, From Divergent Power Series to Analytic Functions. Theory and Applications of Multisummable Power Series, 1582 (1994), Springer Zbl0810.34046MR1317343
  2. A.D. Bruno, Analytical form of differential equations, Transactions Moscow Math.Soc 25 (1971), 131-288 Zbl0272.34018
  3. T. Carletti, The Lagrange inversion formula on non--Archimedean fields. Non--Analytical Form of Differential and Finite Difference Equations, DCDS Séries A 9 (2003), 835-858 Zbl1036.37017MR1903046
  4. T. Carletti, S. Marmi, Linearization of analytic and non–analytic germs of diffeomorphisms of ( , 0 ) , Bull. Soc. Math. de France 128 (2000), 69-85 Zbl0997.37017MR1765828
  5. A. Giorgilli, A. Fontich, L. Galgani, C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point with an application to the restricted three body problem, J. of Differential Equations 77 (1989), 167-198 Zbl0675.70027MR980547
  6. A. Gray, A fixed point theorem for small divisors problems, J. Diff. Eq 18 (1975), 346-365 MR375389
  7. G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Oxford Univ. Press Zbl0058.03301MR67125
  8. M.R. Herman, Recent Results and Some Open Questions on Siegel’s Linearization Theorem of Germs of Complex Analytic Diffeomorphisms of n near a Fixed Point, Proc. VIII Int. Conf. Math. Phys. (1986), 138-184, World Scientific 
  9. G. Koenigs, Recherches sur les équations fonctionelles, Ann. Sc. E.N.S. 1 (1884), 3-41 MR1508749
  10. S. Marmi, P. Moussa, J.-C. Yoccoz, The Bruno functions and their regularity properties, Communications in Mathematical Physics 186 (1997), 265-293 Zbl0947.30018MR1462766
  11. N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Usp. Math. Nauk 32 (1977), 5-66 Zbl0389.70028MR501140
  12. R. Pérez--Marco, Sur les dynamiques holomorphes non linéarisables et une conjecture de V.I. Arnold, Ann. scient. Éc. Norm. Sup. (4) 26 (1993), 565-644 Zbl0812.58051MR1241470
  13. R. Pérez--Marco, Sur la dynamique des germes de difféomorphismes de ( , 0 ) et des difféomorphismes analytiques du cercle, (1990) 
  14. H. Poincaré, Œuvres, tome I (1917), Gauthier--Villars, Paris 
  15. J.--P. Ramis, Séries divergentes et Théorie asymptotiques, Publ. Journées X--UPS (1991), 1-67 
  16. C.L. Siegel, Iteration of analytic functions, Annals of Mathematics 43 (1942), 807-812 Zbl0061.14904MR7044
  17. S. Sternberg, Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech 10 (1961), 451-474 Zbl0131.26802MR133400
  18. J.-C. Yoccoz, Théorème de Siegel, polynômes quadratiques et nombres de Bruno, Astérisque 231 (1995), 3-88 MR1367353
  19. A.D. Bruno, Analytical form of differential equations, Transactions Moscow Math. Soc. 26 (1972), 199-239 Zbl0269.34006
  20. N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems., Russ. Math. Surv. 32 (1977), 1-65 Zbl0389.70028MR501140

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.