Linearization of analytic and non-analytic germs of diffeomorphisms of ( , 0 )

Timoteo Carletti; Stefano. Marmi

Bulletin de la Société Mathématique de France (2000)

  • Volume: 128, Issue: 1, page 69-85
  • ISSN: 0037-9484

How to cite

top

Carletti, Timoteo, and Marmi, Stefano.. "Linearization of analytic and non-analytic germs of diffeomorphisms of $({\mathbb {C}},0)$." Bulletin de la Société Mathématique de France 128.1 (2000): 69-85. <http://eudml.org/doc/87822>.

@article{Carletti2000,
author = {Carletti, Timoteo, Marmi, Stefano.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Siegel center problem; linearization; normal forms; analytic diffeomorphisms; Gevrey classes; small divisors},
language = {eng},
number = {1},
pages = {69-85},
publisher = {Société mathématique de France},
title = {Linearization of analytic and non-analytic germs of diffeomorphisms of $(\{\mathbb \{C\}\},0)$},
url = {http://eudml.org/doc/87822},
volume = {128},
year = {2000},
}

TY - JOUR
AU - Carletti, Timoteo
AU - Marmi, Stefano.
TI - Linearization of analytic and non-analytic germs of diffeomorphisms of $({\mathbb {C}},0)$
JO - Bulletin de la Société Mathématique de France
PY - 2000
PB - Société mathématique de France
VL - 128
IS - 1
SP - 69
EP - 85
LA - eng
KW - Siegel center problem; linearization; normal forms; analytic diffeomorphisms; Gevrey classes; small divisors
UR - http://eudml.org/doc/87822
ER -

References

top
  1. [Br] BRJUNO (A.D.). — Analitycal Form of Differential Equations, Trans. Moscow Math. Soc., t. 25, 1971, p. 131-288. Zbl0272.34018MR51 #13365
  2. [Ca] CARLETTI (T.). — The Lagrange Inversion Formula on Non-Archimedean Fields, preprint, 1999. 
  3. [Da] DAVIE (A.M.). — The Critical Function for the Semistandard Map, Nonlinearity, t. 7, 1990, p. 21-37. MR95f:58067
  4. [Du] DUVERNEY (D.). — U-Dérivation, Annales de la Faculté des Sciences de Toulouse, vol II, 3, 1993. Zbl0803.12003MR94m:12008
  5. [GY1] GRAMCHEV (T.), YOSHINO (M.). — WKB Analysis to Global Solvability and Hypoellipticity, Publ. Res. Inst. Math. Sci. Kyoto Univ., t. 31, 1995, p. 443-464. Zbl0842.35021MR96m:35048
  6. [GY2] GRAMCHEV (T.), YOSHINO (M.). — Rapidly Convergent Iteration Method for Simultaneous Normal Forms of Commuting Maps, preprint, 1997. 
  7. [He] HERMAN (M.R.). — Proc. VIII Int. Conf. Math. Phys. Mebkhout Seneor Eds. World Scientific, 1986, p. 138-184. 
  8. [HW] HARDY (G.H.), WRIGHT (E.M.). — An Introduction to the Theory of Numbers, 5th ed. — Oxford Univ. Press. 
  9. [Lo] LOCHAK (P.). — Canonical Perturbation Theory via Simultaneous Approximation, Russ. Math. Surv., t. 47, 1992, p. 57-133. Zbl0795.58042MR94f:58110
  10. [MMY] MARMI (S.), MOUSSA (P.), YOCCOZ (J.-C.). — The Brjuno Functions and Their Regularity Properties, Comm. Math. Physics, t. 186, 1997, p. 265-293. Zbl0947.30018MR98e:58137
  11. [Si] SIEGEL (C.L.). — Iteration of Analytic Functions, Ann. Math., t. 43, 1942, p. 807-812. Zbl0061.14904MR4,76c
  12. [Yo] YOCCOZ (J.-C.). — Théorème de Siegel, polynômes quadratiques et nombres de Brjuno, Astérisque, 231, 1995, p. 3-88. MR96m:58214

Citations in EuDML Documents

top
  1. Stefano Marmi, Carlo Carminati, Linearization of germs: regular dependence on the multiplier
  2. Timoteo Carletti, Sulla stabilità di un punto fisso per funzioni di n variabili complesse. Problema del Centro di Schröder-Siegel
  3. Timoteo Carletti, Exponentially long time stability for non-linearizable analytic germs of ( n , 0 ) .
  4. Laurent Stolovitch, Smooth Gevrey normal forms of vector fields near a fixed point
  5. Masafumi Yoshino, Todor Gramchev, Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks

NotesEmbed ?

top

You must be logged in to post comments.