Initial boundary value problem for the mKdV equation on a finite interval
Anne Boutet de Monvel[1]; Dmitry Shepelsky
- [1] Université Paris 7, Institut de Mathématiques de Jussieu, case 7012, 2 place Jussieu, 75251 Paris (France), Institute for Low Temperature Physics, Mathematical Division, 47 Lenin Avenue, 61103 Kharkov (Ukraine)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 5, page 1477-1495
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoutet de Monvel, Anne, and Shepelsky, Dmitry. "Initial boundary value problem for the mKdV equation on a finite interval." Annales de l’institut Fourier 54.5 (2004): 1477-1495. <http://eudml.org/doc/116149>.
@article{BoutetdeMonvel2004,
abstract = {We analyse an initial-boundary value problem for the mKdV equation on a finite interval
$(0,L)$ by expressing the solution in terms of the solution of an associated matrix
Riemann-Hilbert problem in the complex $k$-plane. This RH problem is determined by
certain spectral functions which are defined in terms of the initial-boundary values at
$t=0$ and $x=0,\,L$. We show that the spectral functions satisfy an algebraic “global
relation” which express the implicit relation between all boundary values in terms of
spectral data.},
affiliation = {Université Paris 7, Institut de Mathématiques de Jussieu, case 7012, 2 place Jussieu, 75251 Paris (France), Institute for Low Temperature Physics, Mathematical Division, 47 Lenin Avenue, 61103 Kharkov (Ukraine)},
author = {Boutet de Monvel, Anne, Shepelsky, Dmitry},
journal = {Annales de l’institut Fourier},
keywords = {modified Korteweg-de Vries equation; initial-boundary value problem; global relation; finite interval; Riemann-Hilbert problem; Riemann-Hilbert problem.},
language = {eng},
number = {5},
pages = {1477-1495},
publisher = {Association des Annales de l'Institut Fourier},
title = {Initial boundary value problem for the mKdV equation on a finite interval},
url = {http://eudml.org/doc/116149},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Boutet de Monvel, Anne
AU - Shepelsky, Dmitry
TI - Initial boundary value problem for the mKdV equation on a finite interval
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1477
EP - 1495
AB - We analyse an initial-boundary value problem for the mKdV equation on a finite interval
$(0,L)$ by expressing the solution in terms of the solution of an associated matrix
Riemann-Hilbert problem in the complex $k$-plane. This RH problem is determined by
certain spectral functions which are defined in terms of the initial-boundary values at
$t=0$ and $x=0,\,L$. We show that the spectral functions satisfy an algebraic “global
relation” which express the implicit relation between all boundary values in terms of
spectral data.
LA - eng
KW - modified Korteweg-de Vries equation; initial-boundary value problem; global relation; finite interval; Riemann-Hilbert problem; Riemann-Hilbert problem.
UR - http://eudml.org/doc/116149
ER -
References
top- A. Boutet de Monvel, A.S. Fokas, D. Shepelsky, The mKdV equation on the half-line, J. Inst. Math. Jussieu 3 (2004), 139-164 Zbl1057.35050MR2055707
- A. Boutet de Monvel, A.S. Fokas, D. Shepelsky, Analysis of the global relation for the nonlinear Schrödinger equation on the half-line, Lett. Math. Phys 65 (2003), 199-212 Zbl1055.35107MR2033706
- A. Boutet de Monvel, D. Shepelsky, The modified KdV equation on a finite interval, C. R. Math. Acad. Sci. Paris 337 (2003), 517-522 Zbl1044.35080MR2017129
- A.S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London, Ser. A 453 (1997), 1411-1443 Zbl0876.35102MR1469927
- A.S. Fokas, On the integrability of linear and nonlinear partial differential equations, J. Math. Phys 41 (2000), 4188-4237 Zbl0994.37036MR1768651
- A.S. Fokas, Two dimensional linear PDEs in a convex polygon, Proc. Roy. Soc. London, Ser. A 457 (2001), 371-393 Zbl0988.35129MR1848093
- A.S. Fokas, Integrable nonlinear evolution equations on the half-line, Commun. Math. Phys 230 (2002), 1-39 Zbl1010.35089MR1930570
- A.S. Fokas, A.R. Its, The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal 27 (1996), 738-764 Zbl0851.35122MR1382831
- A.S. Fokas, A.R. Its, The nonlinear Schrödinger equation on the interval Zbl1057.37063MR2074625
- A.S. Fokas, A.R. Its, L.-Y. Sung, The nonlinear Schrödinger equation on the half-line Zbl1181.37095MR2150354
- X. Zhou, The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal 20 (1989), 966-986 Zbl0685.34021MR1000732
- X. Zhou, Inverse scattering transform for systems with rational spectral dependence, J. Differential Equations 115 (1995), 277-303 Zbl0816.35104MR1310933
- V.E. Zakharov, A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funct. Anal. Appl. 8 (1974), 226-235 Zbl0303.35024
- V.E. Zakharov, A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering. II, Funct. Anal. Appl. 13 (1979), 166-174 Zbl0448.35090
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.