Initial boundary value problem for the mKdV equation on a finite interval

Anne Boutet de Monvel[1]; Dmitry Shepelsky

  • [1] Université Paris 7, Institut de Mathématiques de Jussieu, case 7012, 2 place Jussieu, 75251 Paris (France), Institute for Low Temperature Physics, Mathematical Division, 47 Lenin Avenue, 61103 Kharkov (Ukraine)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 5, page 1477-1495
  • ISSN: 0373-0956

Abstract

top
We analyse an initial-boundary value problem for the mKdV equation on a finite interval ( 0 , L ) by expressing the solution in terms of the solution of an associated matrix Riemann-Hilbert problem in the complex k -plane. This RH problem is determined by certain spectral functions which are defined in terms of the initial-boundary values at t = 0 and x = 0 , L . We show that the spectral functions satisfy an algebraic “global relation” which express the implicit relation between all boundary values in terms of spectral data.

How to cite

top

Boutet de Monvel, Anne, and Shepelsky, Dmitry. "Initial boundary value problem for the mKdV equation on a finite interval." Annales de l’institut Fourier 54.5 (2004): 1477-1495. <http://eudml.org/doc/116149>.

@article{BoutetdeMonvel2004,
abstract = {We analyse an initial-boundary value problem for the mKdV equation on a finite interval $(0,L)$ by expressing the solution in terms of the solution of an associated matrix Riemann-Hilbert problem in the complex $k$-plane. This RH problem is determined by certain spectral functions which are defined in terms of the initial-boundary values at $t=0$ and $x=0,\,L$. We show that the spectral functions satisfy an algebraic “global relation” which express the implicit relation between all boundary values in terms of spectral data.},
affiliation = {Université Paris 7, Institut de Mathématiques de Jussieu, case 7012, 2 place Jussieu, 75251 Paris (France), Institute for Low Temperature Physics, Mathematical Division, 47 Lenin Avenue, 61103 Kharkov (Ukraine)},
author = {Boutet de Monvel, Anne, Shepelsky, Dmitry},
journal = {Annales de l’institut Fourier},
keywords = {modified Korteweg-de Vries equation; initial-boundary value problem; global relation; finite interval; Riemann-Hilbert problem; Riemann-Hilbert problem.},
language = {eng},
number = {5},
pages = {1477-1495},
publisher = {Association des Annales de l'Institut Fourier},
title = {Initial boundary value problem for the mKdV equation on a finite interval},
url = {http://eudml.org/doc/116149},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Boutet de Monvel, Anne
AU - Shepelsky, Dmitry
TI - Initial boundary value problem for the mKdV equation on a finite interval
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1477
EP - 1495
AB - We analyse an initial-boundary value problem for the mKdV equation on a finite interval $(0,L)$ by expressing the solution in terms of the solution of an associated matrix Riemann-Hilbert problem in the complex $k$-plane. This RH problem is determined by certain spectral functions which are defined in terms of the initial-boundary values at $t=0$ and $x=0,\,L$. We show that the spectral functions satisfy an algebraic “global relation” which express the implicit relation between all boundary values in terms of spectral data.
LA - eng
KW - modified Korteweg-de Vries equation; initial-boundary value problem; global relation; finite interval; Riemann-Hilbert problem; Riemann-Hilbert problem.
UR - http://eudml.org/doc/116149
ER -

References

top
  1. A. Boutet de Monvel, A.S. Fokas, D. Shepelsky, The mKdV equation on the half-line, J. Inst. Math. Jussieu 3 (2004), 139-164 Zbl1057.35050MR2055707
  2. A. Boutet de Monvel, A.S. Fokas, D. Shepelsky, Analysis of the global relation for the nonlinear Schrödinger equation on the half-line, Lett. Math. Phys 65 (2003), 199-212 Zbl1055.35107MR2033706
  3. A. Boutet de Monvel, D. Shepelsky, The modified KdV equation on a finite interval, C. R. Math. Acad. Sci. Paris 337 (2003), 517-522 Zbl1044.35080MR2017129
  4. A.S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London, Ser. A 453 (1997), 1411-1443 Zbl0876.35102MR1469927
  5. A.S. Fokas, On the integrability of linear and nonlinear partial differential equations, J. Math. Phys 41 (2000), 4188-4237 Zbl0994.37036MR1768651
  6. A.S. Fokas, Two dimensional linear PDEs in a convex polygon, Proc. Roy. Soc. London, Ser. A 457 (2001), 371-393 Zbl0988.35129MR1848093
  7. A.S. Fokas, Integrable nonlinear evolution equations on the half-line, Commun. Math. Phys 230 (2002), 1-39 Zbl1010.35089MR1930570
  8. A.S. Fokas, A.R. Its, The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal 27 (1996), 738-764 Zbl0851.35122MR1382831
  9. A.S. Fokas, A.R. Its, The nonlinear Schrödinger equation on the interval Zbl1057.37063MR2074625
  10. A.S. Fokas, A.R. Its, L.-Y. Sung, The nonlinear Schrödinger equation on the half-line Zbl1181.37095MR2150354
  11. X. Zhou, The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal 20 (1989), 966-986 Zbl0685.34021MR1000732
  12. X. Zhou, Inverse scattering transform for systems with rational spectral dependence, J. Differential Equations 115 (1995), 277-303 Zbl0816.35104MR1310933
  13. V.E. Zakharov, A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funct. Anal. Appl. 8 (1974), 226-235 Zbl0303.35024
  14. V.E. Zakharov, A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering. II, Funct. Anal. Appl. 13 (1979), 166-174 Zbl0448.35090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.